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Preface

Preface to Third Edition

A longer discussion of imaging with aberration correctors and the effects of the
multitude of aberrations they produce has been added, along with a short discussion
of ABF (annular bright field) and GPUs (graphical processing units) for faster
numerical calculations.

The associated programs discussed in the text will be available on an associated
web site (currently sourceforge.com\computem, but may move as time
goes on).

Again, I apologize in advance for leaving out some undoubtedly outstanding
references. I also apologize for the as yet undiscovered errors that remain in the text.

Earl J. Kirkland, July 2019

Preface to Second Edition

Several new topics have been added, some small errors have been corrected,
and some new references have been added in this edition. New topics include
aberration-corrected instruments, scanning confocal mode of operations, Bloch
wave eigenvalue methods, and parallel computing techniques. The first edition
included a CD with computer programs, which is not included in this edition.
Instead the associated programs will be available on an associated web site
(currently people.ccmr.cornell.edu/~kirkland, but may move as time
goes on).

I wish to thank Mick Thomas for preparing the specimen used to record the
image in Fig. 5.25 and to thank Stephen P. Meisburger for suggesting an interesting
biological specimen (α = Hemolysin) to use in a figure.

v



vi Preface

Again, I apologize in advance for leaving out some undoubtedly outstanding
references. I also apologize for the as yet undiscovered errors that remain in the text.

Earl J. Kirkland, December 2009

Preface to First Edition

Image simulation has become a common tool in HREM (High-Resolution Electron
Microscopy) in recent years. However, the literature on the subject is scattered
among many different journals and conference proceedings that have occurred in
the last two or three decades. It is difficult for beginners to get started in this field.
The principal method of image simulation has come to be known as simply the
multislice method. This book attempts to bring the diverse information on image
simulation together into one place and to provide a background on how to use
the multislice method to simulate high-resolution images in both conventional and
scanning transmission electron microscopy. The main goals of image simulation
include understanding the microscope and interpreting high-resolution information
in the recorded micrographs. This book contains sections on the theory of image
formation and simulation as well as a more practical introduction on how to use
the multislice method on real specimens. Also included with this book is a CD-
ROM with working programs to perform image simulation. The source code as well
as the executable code for IBM-PC and Apple Macintosh computers is included.
Although the programs may not have a very elegant user interface by today’s
standards (simple command line dialog), the source code should be very portable
to a variety of different computers. It has been compiled and run on Macs, PCs, and
several different types of UNIX computers.

This book is intended to be at the level of first-year graduate students or advanced
undergraduates in physics or engineering with an interest in electron microscopy. It
assumes a familiarity with quantum mechanics, Fourier transforms and diffraction,
some simple optics, and basic computer skills (although not necessarily program-
ming skills) at the advanced undergraduate level. Prior experience with electron
microscopy is also helpful. The material covered should be useful to students
learning the material for the first time as well as to experienced researchers in
the field. The programs provided on the CD can be used as a black box without
understanding the underlying programs (with a primary goal of understanding
the transmission electron microscope image), or the source code can be used to
understand how to write your own version of the simulation programs.

Although an effort was made to include references to most of the appropriate
publications on this subject, there are undoubtedly some that were omitted. I
apologize in advance for leaving out some undoubtedly outstanding references. I
also apologize for the as yet undiscovered errors that remain in the text.

I wish to acknowledge the support of various funding agencies (principally
DOE, NSF, and NIH) that have supported my research efforts over the past several



Preface vii

decades. My research experience has substantially contributed to my understanding
of the material covered in this book.

I also wish to thank Dr. David A. Muller and Dr. Richard R. Vanfleet for
providing many helpful suggestions and help in proofreading the manuscript and
to thank Dr. M. A. O’Keefe for providing helpful comments on electron microscopy
and image simulation.

Earl J. Kirkland, March 1998

MATLAB(R) is a registered trademark of The Mathworks, Inc.

Windows is a registered trademark of Microsoft, Inc.

The Octave and other programs listed in this book are supplied for instruc-
tional purposes, AS IS WITHOUT ANY WARRANTY, WITHOUT EVEN THE
IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE to the extent permitted by law. Effort has been made to
insure the programs are correct, but neither the author nor the publisher shall be
held responsible or liable for any damage resulting from the use or failure to use
these programs.
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Chapter 1
Introduction

1.1 Computing in Electron Microscopy

Electron microscopy continues to push the limits of resolution. At high resolution,
image artifacts due to instrumental or specimen limitations can greatly complicate
image interpretation. The computer is finding an ever increasing role in interpreting
high-resolution transmission electron micrographs as well as extracting additional
information from the recorded images. Computer technology has been progressing
at a very rapid pace over the past several decades. The rate of improvement in
computing is certainly much faster than the rate of improvement of the electron
microscope. A very powerful computer is now much less than 1% of the cost of
a respectable electron microscope even though this level of computer hardware
used to cost much more than a high performance electron microscope. It is very
worthwhile to try to exploit the computer in electron microscopy in any way possible
to extract more information about the specimen or to reduce the cost or effort
required to obtain this information. Various applications of computing to electron
microscopy may be arranged in the following categories.

Image simulation: Numerically calculate electron microscope images from first
principles and a detailed description of the specimen and the instrument. Usually
involving various nonlinear imaging modes and dynamical scattering in thick
specimens.

Image processing and data analysis: The inverse of image simulation. Try to
extract additional information from the experimentally recorded electron micro-
graphs by applying numerical computation to the digitized micrographs. Exit
wave reconstructions, tomography, ptychography, and cryo-microscopy also
require significant amounts of computation.

© Springer Nature Switzerland AG 2020
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Instrument design: CAD (computer aided design) in electron optics. Numerical
calculation of electron optical properties (i.e., aberration, etc.) of magnetic and
electrostatic lens and deflectors in the electron microscope to optimize the
performance of the instrument.

On-line control: Directly control the operation of the microscope and record
images and spectra directly from the instrument. The computer is directly wired
into the electron microscope electronics.

Data archiving: Save the recorded data. Manage the large volume of data
generated when recording a series of images.

Image simulation of electron micrographs has a long history and is the principle
topic of this book. There are two general types of image simulation. One group of
methods involves Bloch wave eigenstates and a matrix formulation in reciprocal
space (Bethe [31], Howie and Whelan [219]) and the other group involves mathe-
matically slicing the specimen along the beam direction (the multislice method).
The multislice method (Cowley and Moodie [78], Lynch and O’Keefe [325],
Goodman and Moodie [162], Ishizuka and Uyeda [236], Van Dyck [506]) is usually
more flexible for a computer simulation of crystalline specimens with defects or
interfaces as well as completely amorphous materials. Bloch wave solutions are
more amenable to analytical calculations with pencil and paper for small unit cells
and can provide valuable insight into the scattering process.

Attempts to analytically derive the theory of image formation in the electron
microscope for specimen with large unit cells (and defects and interfaces) quickly
arrive at equations that do not have a closed form analytical solution or are too
difficult to easily interpret. The only recourse is a numerical solution. Image
simulation numerically computes the electron micrograph from first principles.
Starting from a basic quantum mechanical description of the interaction between
the imaging electrons in the microscope and the atoms in the specimen the
wave function of the imaging electrons may be calculated at any position in the
microscope. If the optical properties of the lenses in the microscope are known,
then the two-dimensional intensity distribution in the final electron micrograph can
be calculated with a relatively high precision. Image simulation can provide several
sources of additional information about the specimen. First, it can reveal which
features of the image are due to artifacts produced by aberrations in the electron
microscope and which image features are due to the specimen itself (and possibly
relate features in the image to unsuspected properties of the specimen). Image
simulation is an aid in interpreting the image recorded in the electron microscope.
Second, it is relatively simple to change instrumental parameters in the simulation
that would be difficult if not impossible to change in practice. For example, it is
easy to change the beam energy or spherical aberration to an arbitrary value to see
what happens. It is much easier to use image simulation to determine what type of
instrument is required to investigate a particular specimen than it would be to build
each type of electron microscope and see what happens. Image simulation can be
used as both an aid in image interpretation and a means of exploring new types of
imaging in the microscope.
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Fig. 1.1 Approximate relation between different theoretical concepts and methods in common use
for the calculation of electron microscope images. The simplest start at the top and become more
accurate and difficult going down. Concepts based mainly in image space (or real space) are on the
left and diffraction space (reciprocal space) on the right. Real space concepts and diffraction space
concepts are related by a Fourier transform, FT (and inverse Fourier transform). Some sophisticated
methods still in development may not be shown here

The conceptual relationship between various theories and methods of calculation
is shown in Fig. 1.1. The theory can be considered in a real space or diffraction
space point of view, which are related by a Fourier transform. The simplest image
interpretation is the so-called phase grating calculation in which the specimen
is only a few atoms thick and the effect is a simple phase shift of the incident
electron beam, which is roughly equivalent to a simple kinematical scattering model
(electrons scattered at most once by a single atom). These are relatively simple to
calculate and lead to some useful concepts but become inaccurate and misleading
for specimens of a practical thickness. The most accurate and difficult calculations
shown are the multislice and Bloch wave calculations. In particular, multislice is
numerically more efficient because it makes use of the FFT (fast Fourier transform).
The discussions that follows start with the simple approximations and works up
(down in Fig. 1.1) to the more complicated calculations.

Image processing and data analysis are the inverse of image simulation. Start-
ing from recorded experimental images the computer can process the micrographs
to improve their interpretability or to try to recover additional information in the
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micrographs. Image processing includes image enhancement such as simple contrast
stretching or noise cleaning as well as image restoration or image reconstruction.
Image restoration attempts to deconvolve the transfer function of the instrument
from a single image to improve the apparent resolution of the recorded image.
Image reconstruction attempts to combine several images (such as a defocus series)
into one image with more information. In bright field phase contrast microscopy a
series of images taken at different defocus values (a defocus series) together contain
more information than any single image in the series. The computer can be used to
reconstruct all of the information in the defocus series into a single image with more
information (usually this means higher resolution) than any single isolated image in
the series (see for example Kirkland [267, 270, 277], Kirkland et al. [284], Coene
et al. [66] and Thust et al. [490]). Image reconstruction is inherently more difficult
than image simulation because it must invert a complicated nonlinear process.

Electron tomography endeavors to reconstruct a 3D structure from a sequence
of 2D images recorded at different tilt angles (for example, Midgley [346],
Ercius et al. [121]) and can require significant computation. Cryogenic elec-
tron microscopy of biological specimens (for example, Frank [143], Kourkoutis
et al. [294], Cheng et al. [63], Nogales [374]) involves substantial computation to
average multiple low dose images of single particles at different orientations. Off-
axis electron holography (Lichte [314]) may also involve a significant amount of
computation. These important topics will be left to an author more knowledgeable
in these areas.

Computer aided instrument design is a broad and rich field all of its own.
It is more the realm of the manufacturers currently. This subject has been recently
reviewed by Hawkes and Kasper [196, 197] and will not be considered here.

On-line control of the electron microscope received considerable attention in the
literature in the last decade (see for example Erasmus and Smith [120], Smith [465],
Skarnulis [458], Kirkland [271, 278]) but is now becoming mainly the province of
the commercial instrument manufacturers. The original equipment manufacturers
are perhaps in a better position to interface directly with the inner working of the
instrument. Many new electron microscopes now come equipped with a computer
to record the data (spectra and images) and possibly control the instrument. This
can take the form of automatic alignment and focusing or simply a replacement
for a traditional collection of knobs and switches. Aberration-corrected instruments
have become so complicated that computer control is required and direct manual
control is not practical. The related topic of telemicroscopy or remote access (see for
example Fan et al. [125], Zaluzec [541] or O’Keefe et al. [383]) involve accessing
a microscope (or other instrument) over a network (the world wide web) from a
computer in a location far away from the instrument. Many software packages now
exist to remotely control a computer in a general sense and can easily be used to
access computer controlled instruments without writing new specialized software.
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Data archiving is now common place in many fields. Storing electron micro-
graphs is in fact similar to storing any other type of image data. Digital storage
has the advantage that the data will not degrade with time (as a photograph might)
and the data can be readily transmitted electronically to any location. Also, digital
storage can take up less space than a traditional collection of film or plates. Electron
microscopy can readily take advantage of every day advances in data storage.

1.2 Organization of This Book

The level of discussion in this book is approximately at a beginning graduate student
or advanced undergraduate student interested in the theory of image formation in the
transmission electron microscope. It is assumed that the reader has some familiarity
with quantum mechanics, Fourier transforms, and elementary optics. This book
is not an introduction to computer programming. The reader is also assumed to
understand the basic principles of computer programming. Numerical computer
programming is discussed in a high level abstract manner.

Chapter 2 begins with an overview of the electron microscope instrument
(scanning and conventional, STEM, and CTEM), the fundamental physics of
electron dynamics, and the optical aberrations of electron lenses. Chapter 3 contains
a theory of image formation for very thin specimens ignoring the geometrical
thickness of the specimen. The transfer function is presented and investigated for
several imaging modes. Chapter 4 is somewhat of a detour. It discusses numerical
sampling and the fast Fourier transform (FFT) that will be needed in later chapters.
Chapter 4 can be skipped if the reader is familiar with these topics. Chapter 5 starts
the discussion of calculation methods, beginning with the electron atom interaction
and very thin specimens. Chapter 6 is a long theoretical discussion of methods
of calculating the propagation of the electron through thick (usually less than a
few thousand Angstroms however) specimens. The Bloch wave eigenvalue and
multislice methods are presented and discussed. Chapter 7 gives several applications
of the multislice method. Some simple examples are first worked through in an
educational approach, so the reader can learn how to use the method; then several
more complicated examples are given to illustrate some interesting features of the
electron microscope image. Chapter 8 documents how to use the programs used in
this book and available to be downloaded from an associated web site.

Tables 1.1 and 1.2 show some frequently used symbols and acronyms. Some
symbols may be used for more than one thing, but the usage should be clear from
the context.
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Table 1.1 Some symbols and their descriptions

Symbol Description

a, b, c Unit cell size of the specimen in x,y,z directions

a0 Bohr radius (0.529 Å)

A(k) Aperture function (Eq. 3.54)

B Debye Waller factor in Å2 or magnetic field

c Speed of light in vacuum

CS = CS3 Third order spherical aberration

CS5 Fifth order spherical aberration

D Normalized defocus (Eq. 2.11)

D(k) STEM detector function (Eq. 3.68)

e Magnitude of the charge on the electron

fe Electron scattering factor (Eq. 5.15)

fX X-ray scattering factor (Eq. C.3)

G Reciprocal lattice vector

g(x) Recorded image intensity (with Fourier transform G(k))

h Planck’s constant (h̄ = h/(2π))

J0(x) Bessel function of order zero

k 2D spatial frequency in the Fourier transform of the image plane

K = k(Csλ
3)1/4 Dimensionless spatial frequency

m0 Rest mass of the electron

m = γm0 Total mass of the electron

t (x) Specimen transmission function (Eq. 3.3)

Tnm Tunning tolerance for aberration Cnm (Eq. 2.29)

TCC Transmission cross coefficient (Sect. 5.4.3)

V Accelerating voltage

x, y Position in the image plane

z Position along the optic axis

α Electron scattering half angle

β Condenser illumination half angle

β Brightness

γ Relativistic factor (Eq. 2.2)

Δf Defocus

λ Electron wavelength (Eq. 2.5)

σe Electron interaction parameter (Eq. 5.6)

χ Phase error due to aberration of a focused electron wave

ψ(x) Electron wave function
∂σ
∂Ω

Partial cross section for scattering

Also see Table 2.1 for more aberration symbols



1.2 Organization of This Book 7

Table 1.2 Some acronyms and their descriptions

Acronyms Description

ABF Annular Bright Field

ADF Annular Dark Field

BF Bright Field

CBED Convergent Beam Electron Diffraction

CFEG Cold Field Emission Gun

CPU Central Processing Unit

CTEM Conventional Transmission Electron Microscope

CTF Contrast Transfer Function (MTF)

DFT Discrete Fourier Transform or Density Functional Theory

DPC Differential Phase Contrast

DOF Depth Of Focus

EELS Electron Energy Loss Spectroscopy

EHT Extra High Tension (high voltage)

EWR Exit Wave Reconstruction

FEG Field Emission Gun

FT Fourier Transform

FFT Fast Fourier Transform

GPU Graphics Processing Unit

GUI Graphical User Interface

HAADF High Angle Annular Dark Field

HREM High-Resolution Transmission Electron Microscope (CTEM or STEM)

IAM Independent Atom Model or Isolated Atom Model

LAADF Low Angle Annular Dark Field

MPI Message Passing Interface

MTF Modulation Transfer Function (CTF)

PSF Point Spread Function

SEM Scanning Electron Microscope

SMP Shared Memory Processor

SNR Signal to Noise Ratio

STEM Scanning Transmission Electron Microscope

TDS Thermal Diffuse Scattering

WPOA Weak Phase Object Approximation



Chapter 2
The Transmission Electron Microscope

2.1 Introduction

The modern transmission electron microscope has evolved over most of the twen-
tieth century into a rather complex instrument. The twenty-first century is bringing
forth a sequence of commercial aberration correction devices further complicating
the instrument (as well as adding to their expense) in a never-ending quest for
higher resolution. The Conventional Transmission Electron Microscope (CTEM)
was first invented in the early 1930s by Knoll and Ruska [289, 432] as an extension
of earlier work to perfect the cathode ray oscilloscope. Early microscopes had a
resolution that was no better than a light microscope but there was considerable
speculation at the time that atomic resolution should be possible. These speculations
have been realized in current commercial instruments. For his work on the CTEM,
Ruska shared the 1986 Nobel prize in physics with Binnig and Rohrer [35] for
their invention of the scanning tunneling microscope (STM). In 2017, the Nobel
prize for chemistry was awarded to Dubochet, Frank, and Henderson [56] for
their achievements in cryogenic electron microscopy of biological molecules in
which the three-dimensional structure is reconstructed from a large number of low
dose images of the molecules in different orientations. The Scanning Transmission
Electron Microscope (STEM) was invented shortly after the CTEM in the late
1930s by von Ardenne [512]. The utility of the STEM was greatly increased in
the late 1960s by Crewe et al. [85] with the addition of a cold field emission gun
(FEG) source with a small source size and high brightness. Both CTEM and STEM
form an image from the electrons that are transmitted through a thin specimen
and usually require a relatively high electron energy (60–1000 keV). Haguenau
et al. [179] and the beginning chapters of Heidenreich [202] or Hall [184], the
two contributed volumes edited by Hawkes [192] and Mulvey [366] have a more
complete discussion of the history of the transmission electron microscope.

The scanning electron microscope (SEM) is related to the STEM in that both scan
a focused electron beam across the specimen. However, the SEM usually uses an

© Springer Nature Switzerland AG 2020
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electron beam of lower energy (approximately 1–30 keV versus 60 keV–1 MeV for
CTEM and STEM) and forms an image signal from the secondary or backscattered
electrons from a bulk specimen (the specimen is not necessarily thin). This results
in a lower achievable resolution but has the advantage of being able to view the
surface of bulk specimen without thinning. The SEM mode was first investigated
around the same time as the CTEM and STEM were invented, and was refined by
Oatley’s group at Cambridge University. The history of the SEM has been reviewed
by Oatley et al. [375] and McMullan [336]. The SEM itself has been reviewed by
many authors (for example, Goldstein et al. [158] and Reimer [413]) and computer
calculation of SEM images has been summarized by Joy [250]. Although the SEM
is equally important it will not be discussed further in this book.

An approximate schematic cross section of a typical modern high-resolution
aberration-corrected CTEM instrument is shown in Fig. 2.1. The specimen is loaded
in the gap of the objective lens just above the objective aperture (not shown in the
drawing) mechanism. Combined CTEM/STEMs and dedicated CTEMs and STEMs
are commercially available. A probe corrector on a STEM would be located before
the specimen and an image corrector is located after the specimen as in Fig. 2.1.
An instrument as shown in Fig. 2.1 should have a field emission gun or FEG
(Schottky electron source) instead of a thermionic source for improved brightness
(and coherence). The condenser lenses transfer the beam onto the specimen. In a
STEM scan coils would also be placed before (above in Fig. 2.1) the specimen.
The aberration corrector corrects for the aberrations in the objective lens, and the
projectors provide further magnification and transfer the image onto the detector
(usually a CCD) at the bottom of the figure (detector not shown). In a CTEM
the whole image is formed (in parallel) at one time whereas in the STEM a
focused probe is scanned across the specimen in a raster fashion and the image
is sequentially built up, one pixel (or image point) at a time. The CTEM is similar
to a conventional light optical microscope and the STEM is similar to a scanning
confocal light optical microscope (for example, Wilson and Sheppard [537]).

The electron source can be a simple thermionic, LaB6, or field emission (hot or
cold) source. The field emission source has a high brightness and small source size
that makes it useful for both conventional and scanning electron microscopes. The
small source size of the field emission source is essential for high-resolution STEM
because the probe is essentially an image of the source (the smaller the source,
the smaller the probe and better the resolution). The increased coherence of the
FEG can also significantly increase the information limit in the CTEM (Otten and
Coene [391]).

A CTEM image detector typically uses a scintillator plus an electronic CCD light
detector. Some new direct electron detectors are sensitive enough to be capable of
electron counting of low current signals in CTEM (McMullan et al. [337, 338]).
A STEM detector also typically uses a scintillator to convert electrons into light
which is detected with a photomultiplier tube (PMT) which can be integrated in
analog for high signals and directly count electrons in low signal rates (Kirkland
and Thomas [285], Findlay and LeBeau [134], Ishikawa et al. [229], and Kaneko
et al. [253]).
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Fig. 2.1 Approximate cross section of a typical high-resolution CTEM column (not to scale) with
an image corrector. There will be a CCD camera or other detector at the bottom of the instrument.
There is an aberration corrector after the specimen to correct aberration of the objective lens. The
electronics, vacuum, and computer systems are usually physically larger than the column unlike
this simplified diagram
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Fig. 2.2 Cross section of the general shape of a rotationally symmetric (about the optic axis),
round lens (on left). The lens is symmetrical for rotation about the optic axis. The fringe fields in
the gap focus the electron beam in a manner similar to that of a glass lens for visible light (on right).
The electron beam travels up or down in this illustration (the optic axis, or z direction)

The general shape of a simple magnetic electron lens is shown (on the left)
in Fig. 2.2. A large DC current flows through a coil of wire which produces a
magnetic field. The field follows the magnetic material (typically an iron alloy) until
it gets to the gap where it extends out towards the electron beam near the center of
the lens. The specimen is usually placed in or near the gap of the objective lens. Lens
designers expend a great amount of effort to shape the magnetic pole faces in the
gap to shape the magnetic field and produce optimum focusing of the electron beam.
The magnetic field forms a lens much like a glass lens for visible light. An analogous
glass lens is shown on the right side of Fig. 2.2. Refer to the books on electron optics
listed at the end of this chapter for more details on how magnetic lenses work.

There are typically two or three condenser lenses that gather the electrons emitted
from the source and transfer them to the specimen. Three condenser lenses give three
degrees of freedom allowing independent adjustment of angle, current, and focus.
With the exception of the electrostatic lens in the electron gun (i.e., electron source),
lenses in the electron microscope are usually rotationally symmetrical magnetic
lenses (Fig. 2.2). The condenser lenses can illuminate the specimen with a wide
collimated parallel beam (in CTEM) or present the objective lens with a parallel
narrow beam (in STEM). The objective lens images the specimen in CTEM mode
or forms a small probe of atomic dimensions on the specimen in STEM mode. In
the CTEM mode the objective forms a virtual image which is further magnified
by several projector lenses. STEM and CTEM modes require the objective lens
to be on opposite sides of the specimen. A combined CTEM/STEM will usually
sacrifice the performance in one mode because the specimen and objective lens are
difficult to move. Most instruments currently available were initially CTEMs that
have been converted to a combined STEM/CTEM instrument, so the STEM mode
may not use the best portion of the objective lens field and hence has a reduced
performance. STEM mode may be operated with or without post-specimen lenses.
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Operation without post-specimen lenses can have advantages if there is significant
inelastic scattering in the specimen (because of the inherent chromatic aberration of
magnetic lens). However, the post-specimen portion of the objective lens magnetic
field usually produces at least a small post-specimen lens. STEM mode also can
be particularly useful for atomic resolution spectroscopy (X-ray, electron energy
loss, etc.) from a localized volume of the specimen. The CTEM can also yield near
atomic resolution spectroscopy using imaging energy loss filters (for example, see
Reimer [415]). Herrmann [204, 205] and Smith [460, 461, 463] have reviewed the
instrumental aspects of high-resolution electron microscope operation.

2.2 Modeling the Electron Microscope

If considered as a whole the TEM is a rather complicated instrument. However
much of it can be ignored when considering the specific features of a high-resolution
image. The vacuum system is essential and the TEM only works if there is a vacuum,
but once it is established (with considerable effort in some cases!), it has no further
effect. In a similar vein the illumination system (i.e., condenser lens) once aligned
can be reduced to the properties of the illuminating rays (i.e., coherence and angular
distribution). In CTEM mode the projector lenses magnify the virtual image formed
by the objective lens. Because any defects in the objective lens are greatly magnified
and the angles into the projector lenses are greatly reduced the projector lenses have
little effect on the final image resolution so can also be ignored (in some instances
the projectors may be responsible for small distortion in the image as opposed to
a reduction in resolution). The simplest model to adequately describe the high-
resolution imaging performance of a CTEM is shown in Fig. 2.3 and a similar model
for a STEM is shown in Fig. 2.4. In each model the electrons will be assumed to
be moving in the positive z direction (down in Figs. 2.3 and 2.4) and the image
plane is assumed to be an x, y plane. The symbol α will denote the angle between
the scattered electrons and the optic axis (and also the angle into the objective lens)
in CTEM mode and the angle between the specimen perpendicular and the focused
ray from the objective lens in STEM mode. The optic axis is typically perpendicular
to the plane of the specimen.

The STEM may have several different types of detectors. The bright field (BF)
detector (on the optic axis) detects the electrons that have passed through the

specimen without significant deviation. The annular dark field (ADF) detector
should detect the electrons that have been scattered to high angles (typically greater
than three or four times the objective aperture angle). The annular bright field (ABF)
detector is something in between, and collects electrons in the outer angles of
the cone of rays in the objective angle (typically half). ABF is a relatively new
imaging mode (for example, Findlay et al. [135, 136], Ishikawa et al. [228]). BF is
typically coherent phase contrast, ADF is typically an incoherent image, and ABF is
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Fig. 2.3 Simplified model
(not to scale) of a
high-resolution Conventional
Transmission Electron
Microscope (CTEM). The
condenser lenses (above the
top of the drawing) and
projector lenses (below the
bottom of the drawing) will
be ignored

Fig. 2.4 Simplified model (not to scale) of a Scanning Transmission Electron Microscope
(STEM). The condenser lenses (above the top of the drawing) are ignored. Different detectors
are BF = bright field, ADF = annular dark field, ABF = annular bright field
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a little of both. ABF should be equivalent to hollow cone illumination (Rose [424],
Kunath et al. [302]) in CTEM by reciprocity (Sect. 2.4). Various other shapes of
STEM detectors have been proposed including multiple rings and sectors (Haider
et al. [180]). The ultimate detectors simply records the whole area from BF to ADF
as another two-dimensional image at each point in the image (Tate et al. [485])
which can be called ptychography (Rodenburg [423], Nellist and Rodenburg [370],
Plamann and Rodenburg [403], D’Alfonso et al. [90]) or 4D-STEM (for example,
Ophus [388]). This approach produces a rather large amount of image data very
quickly.

The STEM has a set of scan coils positioned before the objective lens. These
are usually arranged so that the illumination electron trajectories rock about
the principle plane of the objective lens (so that the beam does not move across the
objective aperture during scanning). Alternately a virtual objective aperture (VOA)
may be placed prior to the scan coils. At first glance it might seem as if the scan
would cause the beam to move off the BF detector; however, the scan angles are so
small that this is negligible. The objective lens usually gives a large demagnification,
so that the specimen is essentially at the focal plane of the objective lens. The focal
length is typically of order 2–3 mm. Therefore for a 1000 Å scan field the change in
angle due to the scan is approximately 500 Å/2 mm = 2.5×10−5. At 100 keV typical
angles on the BF detector are 2–3 mrad and about 40–200 mrad on the ADF detector.
Therefore scanning the beam should not significantly affect the angles onto the
detector.

2.3 Relativistic Electrons

The electron has a relatively small mass so that even a 100 keV electron is traveling
at approximately one half the speed of light. This means that quantities such as
velocity, wavelength, etc. should be calculated relativistically. The total energy ET

of a charged particle with charge e and rest mass m0 accelerated through a potential
V is given by:

E2
T = (m0c

2 + eV )2 = p2c2 + m2
0c

4 = m2c4 (2.1)

where c is the speed of light in vacuum, p = mv is the particle’s momentum, v is
its velocity, and m is the mass of the particle. From this expression it follows that
the ratio of the electron’s mass to its rest mass is:

m

m0
= γ = 1

√
1 − v2/c2

= 1 + eV

m0c2 (2.2)

and that the velocity of the electron v relative to the velocity of light is:
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Fig. 2.5 Velocity v of the relativistic electron as a function of its kinetic energy eV . c is the speed
of light in vacuum. For comparison the ratio of the electron mass to its rest mass (m/m0) and the
nonrelativistic velocity are also shown

v

c
=
[

1 −
(

m0c
2

m0c2 + eV

)2]1/2

= [eV (eV + 2m0c
2)]1/2

m0c2 + eV
(2.3)

For comparison the nonrelativistic velocity is v/c = √
2eV/(m0c2). The velocity is

shown in Fig. 2.5 as a function of the kinetic energy eV of the electron.
The de-Broglie wavelength λ of the electron is:

λ = h/p (2.4)

where h is Planck’s constant. Substituting this in the above expression for the total
energy (Eq. 2.1) yields:

(m0c
2 + eV )2 =

(
hc

λ

)2

+ m2
0c

4

λ = hc
√

(m0c2 + eV )2 − m2
0c

4

λ = hc
√

eV (2m0c2 + eV )
(2.5)
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Fig. 2.6 Electron wavelength λ as a function of its kinetic energy. For comparison the nonrela-
tivistic result is also shown

The relevant constants have values of m0c
2 = 511 keV, hc = 12.398 keV-Å.

For comparison the nonrelativistic result is λ = hc/
√

2moc2eV . The electron
wavelength is plotted as a function of kinetic energy in Fig. 2.6.

The Schrödinger wave equation of quantum mechanics is not relativistically
correct. The electron is relativistic at the beam energies used in the electron
microscope meaning that the Schrödinger equation should not be used directly.
The relativistic Dirac equation would be the correct wave equation for relativistic
electrons; however, it is significantly more difficult to work with mathematically
(by hand or in the computer). It is now traditional to simply use the Schrödinger
equation with a relativistically correct electron wavelength and mass. This approach
has been compared to more accurate calculation using the Dirac equation by
Fujiwara [153], Ferwerda [129, 130], and Jagannathan et al. [238, 239] and is usually
accurate enough in the typical energy ranges used in the electron microscope.
Op de Beck [92] recently found additional corrections to the use of the Schrödinger
equation with relativistic mass and wavelength. The standard definition of the
relativistic wavelength (Eq. 2.5) can lead to an additional error of order 10%
at 100 keV and 20% at 400 keV in the electron wavelength. This error mostly
cancels if the optical parameters (defocus, spherical aberration, etc.) are consistently
determined using the same electron wavelength (which is usually the case) because
only their product enters. The remaining error produces an apparent change in
the crystal thickness (or equivalently the beam energy) of a few percent in image
simulations. Rother et al. [430] have done a detailed comparison of relativistic
and nonrelativistic electron scattering and also found good agreement with the
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possible exception of very high angle scattering which might be a problem for ADF-
STEM but probably not BF-CTEM. The form of the Schrödinger with a relativistic
electron wavelength and mass as above will be used here because it is significantly
easier to work with; however, some caution must be taken in a strict quantitative
interpretation.

2.4 Reciprocity

The reciprocity theorem of scattering theory as adapted for electron microscopy
(see Pogany and Turner [404]) states that the electron intensities and ray paths
in the microscope (including a specimen) remain the same if their direction is
reversed and the source and detector are interchanged (i.e., the electrons trajectories
and elastic scattering processes have time reversal symmetry). Cowley [73], Zeitler
and Thomson [545], and Engel [117] have discussed the fact that this implies that
the BF-CTEM and the BF-STEM should produce the same image. Reciprocity
applies to all orders of the Born series for elastic interaction of the electrons and
the specimen, so it is not necessary to restrict its implications to thin specimens.
Figure 2.7 compares the ray paths in the CTEM with those in the STEM.

In the CTEM (on left in Fig. 2.7) the electrons start from a point source at the
top and travel down. If the source is in the far field (either directly or by virtue
of the condenser lens), then the specimen is illuminated by a nearly parallel beam.
The objective lens then images each point on the specimen onto the image plane
(film or other electron detectors such as a CCD). It is important to realize that the
film or a CCD is an array of point detectors (one point detector for each image point
in the specimen). In the STEM (on right in Fig. 2.7) the electrons start from a point
source at the bottom and travel up (VG actually built their STEM’s upside down
but this orientation is only for this discussion and not necessary in practice). The
objective lens forms a small probe on the specimen. The probe must be scanned
to produce an image. A bright field detector is a small point detector on axis far
away from the specimen (again in the far field). In each case the electron paths
for only one image point are shown for simplicity. There is an obvious similarity
between these two diagrams. If the direction of the electrons in the STEM is reversed
and the source and detector interchanged, then the BF-STEM and the CTEM are
identical. Both have a point source and a point detector on opposite sides of the
specimen (the ADF-STEM is distinctly different however). This means that the
image in the BF-STEM is equivalent to the BF image in the CTEM. It is even
possible to measure the aberrations in an STEM using methods developed for the
CTEM (Wong et al. [538]). It is not strictly necessary to have an exact point source
(CTEM) or detector (STEM) for the equivalence of BF-STEM and BF-CTEM to
hold. An increase in the illumination angles in the CTEM is equivalent to an increase
in the size of the BF detector in the STEM.
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Fig. 2.7 Reciprocity applied to CTEM and STEM. The electrons are traveling downwards in the
CTEM (left) and upwards in the STEM (right). The arrows indicate the direction of electron travel.
Note that the geometry of the ray paths appear identical except for direction meaning that BF-
CTEM is equivalent to BF-STEM

2.5 Confocal Mode

Confocal mode is a combination of both CTEM and STEM as in Fig. 2.8. The confo-
cal optical microscope has demonstrated improved resolution and other advantages
for many years. This mode has recently been adapted to electron microscopy (Frigo
et al. [150], Zaluzec [542]). This mode is somewhat more difficult to implement in
electron microscopy due to the added instrumentation. The top of the instrument
(Fig. 2.8) is a STEM column (Fig. 2.4). The electron beam is focused to a small
spot on the specimen. The bottom portion of the instrument after the specimen is
basically a CTEM (Fig. 2.3) and images the probe transmitted through the specimen
onto a small detector. There also has to be some way to scan the probe across the
specimen in a raster and synchronously descan the image onto the detector. This
can be done with two sets of scan coils carefully aligned or physically moving the
specimen back and forth with a piezoelectric actuator (Takeguchi [482]) leaving
the electron beam and lenses in a fixed position. Neither mechanism is shown in
Fig. 2.8 for simplicity (may be difficult to implement in an actual instrument) but
can be ignored in the calculations that will come later.
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Fig. 2.8 Confocal mode is a
combination of CTEM
(bottom) and STEM (top). An
STEM focuses a small probe
onto the specimen (top) and a
CTEM (bottom) images the
probe transmitted through the
specimen onto a small
detector (bottom)

2.6 Aberrations

Most objective lenses in use today are rotationally (cylindrically) symmetric as in
Fig. 2.2. Lens designers expend a great deal of effort in shaping the pole faces to
get the best possible lens (minimum possible aberrations). Computer aided design
of magnetic lenses is a sophisticated field by itself (see for example the recent
books by Hawkes and Kasper [196–198]). It is also possible to form a lens by
superimposing multipole elements such as quadrupole, hexapole, octopole, etc. Few
if any microscopes currently use this approach for their primary focusing method
because of its much greater complexity; however, several forms of aberration
correction employ multipole elements.

The symmetry and shape of the magnetic fields in the objective lens are
determined from Maxwell’s equations which prevent the magnetic lens from
performing exactly like the familiar ideal lens in classical light optics. There is
however a close analogy between electron optics and light optics. An equivalent
index of refraction and ray paths for electrons can be defined and magnetic lenses
do approximately focus an image. The wavelength of the high energy electrons is
much smaller than the dimensions of the lenses, so it is appropriate to think about the
geometric rays in the lens just like those in a light optical glass lens. Furthermore the
symmetries of Maxwell’s equations are such that most of the primary light optical
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Fig. 2.9 The effect of spherical aberration Cs on the electron trajectories (left) and electron wave
function (right). On the right the equivalent wave function without spherical aberration is shown
as a dashed line

aberrations (see for example Born and Wolf [42]) also exist for magnetic lenses.
These aberrations determine the deviation from an ideal lens and can be used to
characterize the artifacts in the image.

In a high-resolution image only a small portion of the specimen near the optic
axis is imaged. Therefore only the electron trajectories (or rays) near the optic axis
need to be considered. This approach is called the paraxial ray approximation. If
the electron microscope is well aligned, then off-axis aberrations are also negligible
and the remaining lowest order effect is the third order spherical aberration Cs .
Physically the magnetic field further away from the axis is stronger than is required
so that electrons traveling at larger angles (α) are deflected more than is required to
focus them (as in Fig. 2.9). Cs produces a position error in the electron trajectory
or ray that is proportional to the third power of this angle and a phase error in the
electron wave function that is proportional to the fourth power of the angle.

Ideally a lens forms a spherical wave converging on or emerging from a single
point as on the right side of Fig. 2.9. The aberrations cause the wave to deviate from a
spherical surface with an error δ, and the phase error is χ = (2π/λ)δ. The error δ can
be represented in a variety of basis functions, the most obvious being a power series
in positional deviations (x, y) and angular deviations (αx, αy) from the optic axis.
In high-resolution microscopy the specimen should always be very near the optic
axis, so positional deviations can be ignored leaving only the angular deviations
(larger for higher resolution). If the lens is perfectly symmetric, then the deviation
will not depend on the sign of αx or αy or which direction is chosen. Therefore the

deviation δ can only depend on even powers of α =
√

α2
x + α2

y , leaving:



22 2 The Transmission Electron Microscope

Fig. 2.10 Depth of focus of a
focused probe (or image
point). The solid line is the
outline of the actual beam
near its focus and the dashed
line is the ideal ray path

χ(α) = 2π

λ
δ = 2π

λ

(
1

2
C1α

2 + 1

4
C3α

4 + 1

6
C5α

6 + · · ·
)

(2.6)

where the Cn coefficients have units of length. The deviations of the geometric rays
are proportional to the derivative of χ and the leading numerical factors of each term
are chosen to disappear after differentiation. Δf = −C1 is defocus and C3 = Cs3 =
Cs is third order spherical aberration. There are an infinite number of higher order
terms. C5 = Cs5 is the fifth order spherical aberration. The subscript refers to the
order of the geometric aberration (one less than the order of the wave aberration).
If Cs is given without a numerical subscript it will be assumed to be the primary
third order spherical aberration.

The ideal ray paths of a focused probe (or image point) would converge or cross
over at a single point. The aberrations prevent the rays from meeting at a small
point but instead expand the cross over point into a disk of diameter d as shown
in Fig. 2.10. There is a short length LDOF in which the cross over diameter is
approximately constant. This distance can be called the depth of focus because an
image of the specimen in this region is approximately the same focus. For small
angles α ∼ d/LDOF giving LDOF ∼ d/α. At modest resolution with an objective
angle of α = 10 mrad and a resolution of d = 2 Å LDOF ∼ 200 Å. With a
high-resolution aberration corrector with angles α ∼ 40 mrad and resolution of 1 Å,
LDOF ∼ 25 Å. There is the possibility of using this small depth of focus to perform
optical depth sectioning in the specimen along the optic axis (for example, Einspahr
and Voyles [111], Behan et al. [29], Lupini et al. [322], Hashimoto et al. [191], Xin
et al. [540]).

Defocusing the lens also produces a deviation of the electron trajectory that
departs from the ideal. Defocus can be changed by moving the specimen or changing
the strength of the lens (proportional to the current through the lens coil). The
amount of defocus, Δf is also defined as the deviation of the defocused image plane
from the ideal Gaussian image plane. Defocus produces a phase error in the electron
wave function but is proportional to the second power of the angle α.
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Scherzer [442] found that a static, rotationally symmetric magnetic field with
no sources on the axis will always produce a spherical aberration greater than zero
because the expression for Cs can be written as the sum of quadratic terms. This is
sometimes referred to as “Scherzer’s Theorem.” An electron microscope using this
type of lens will have its instrumental resolution determined mainly by spherical
aberration. Scherzer also noted that the defocus term can be used to partially offset
the effect of Cs over some limited range of angles. For most microscopes, the net
phase error is due to just spherical aberration and defocus as:

χ(α) = 2π

λ

(
1

4
Csα

4 − 1

2
Δf α2

)
(2.7)

Defocus Δf varies with the strength of the objective lens; however, Cs is essentially
constant for a given specimen holder and beam energy. Equation 2.7 can be defined
with the Δf term as positive or negative. Both sign conventions are used in the
literature. With this definition, a positive Δf represents an underfocus (weaker
lens current) of the objective lens. An accurate value of Cs is essential for image
simulation or processing. Several methods for measuring Cs have been described
by Budinger and Glasear [49], Krivanek [297], and others.

The semi-angle into the objective lens α (also the angle between the incident and
scattered rays in CTEM) is related to the spatial frequency k in the image plane by
multiplication by the electron wavelength λ as:

α = λk (2.8)

The units of k are such that 1/k corresponds directly to a spacing d on the specimen
(without multiplication or division by 2π ). The literature on this subject can be very
confusing because various authors add different factors of 2 and π . The simplest
choice of k = 1/d is used here (consistent with the optics literature but not with the
traditional physics choice of k = 2π/d).

The aberration function χ(α) rewritten as a function of k is:

χ(k) = 2π

λ

(
1

4
Csλ

4k4 − 1

2
Δf λ2k2

)

= πλk2(0.5Csλ
2k2 − Δf ) (2.9)

Deviations from rotational symmetry are inevitable due to small machining errors
in the magnetic lenses and small misalignments between lenses. The lowest order
effect is the additional aberration of astigmatism and possibly coma which causes
the defocus to vary with azimuthal angle φ.

χ(k) = π

2
Csλ

3k4 − πΔf λk2 + πfa2λk2 sin[2(φ − φa2)]

+2π

3
fa3λ

2k3 sin[3(φ − φa3)] + 2π

3
fc3λ

2k3 sin[φ − φc3] (2.10)
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where fa2 is twofold astigmatism, fa3 is threefold astigmatism, and fc3 is coma
(Zemlin et al. [546]). φa2, φa3, and φc3 are the azimuthal orientations of these
aberrations. In principle astigmatism can be corrected but small amounts may
remain in the image in practice. Astigmatism can result from small physical machin-
ing errors in the objective lens pole pieces or misalignments of the microscope
column. Threefold astigmatism has recently been found to have a significant effect
as resolution approaches or exceeds 2 Å (Ishizuka [232], Krivanek [298]). Zemlin
et al. [546] described a coma-free alignment procedure using the so-called Zemlim
tableau.

It is possible to write the aberration function in dimensionless form by scaling
with appropriate powers of λ and Cs :

K = k(Csλ
3)1/4 (2.11)

D = Δf/
√

Csλ (2.12)

Da2 = Δfa2/
√

Csλ (2.13)

Da3 = Δfa3/(C
3
s λ)1/4 (2.14)

Dc3 = Δfc3/(C
3
s λ)1/4 (2.15)

χ(K) = π
(

0.5K4 − DK2 + Da2K
2 sin[2(φ − φa2)]

+2

3
Da3K

3 sin[3(φ − φa3)] + 2

3
Dc3K

3 sin[φ − φc3]
)

(2.16)

The aberration function χ(K) is plotted in Fig. 2.11 for various amounts of defocus.
χ(K) is the error (or deviation) of the wavefront from the ideal spherical wavefront.

The effect of the objective lens aberration function is to modulate different spatial
frequencies (or different angles) by a complex function:

HO(K) = exp[−iχ(K)] = cos[χ(K)] − i sin[χ(K)] (2.17)

This function is plotted in Fig. 2.12.
The nonsymmetrical aberrations, such as astigmatism, etc., are not easily visu-

alized in a simple graph. Some of these are illustrated in image form in Figs. 2.13
and 2.14 using computational methods that will be described later. These are images
of a self-luminous point which is the probe function in STEM neglecting any
remaining source size coming from the tip itself. It is not always obvious how
different aberrations will combine in an image. The results of a few combinations
are shown in Fig. 2.14.

A comparable results for a coherent BF image is shown in Fig. 2.15 for
comparison. These aberrations look similar but have both black and white features
(on a large background) and are a little larger that their incoherent counterparts.
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Fig. 2.11 The aberration function χ(K) as a function of the normalized spatial frequency K

for different values of the normalized defocus D = 1.0, 1.5, 2.0, 2.5. Astigmatism and coma are
assumed to be zero

Fig. 2.12 The complex modulation function of the objective lens HO(K) = cos[χ(K)] −
i sin[χ(K)] as a function of the normalized spatial frequency K for the special case of Δf =√

1.5Csλ. Astigmatism and coma are assumed to be zero
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Fig. 2.13 Various single aberrations as an incoherent image. All images are of a 200 keV probe
(or self-luminous point) with a 20 mrad aperture: (a) no aberrations (scale bar 5 Å), (b) defocus
of 100 Å, (c) twofold astigmatism of 100 Å, (d) threefold astigmatism of 10,000 Å, (e) coma of
25,000 Å, and (f) spherical aberration of 0.057 mm

Fig. 2.14 Probe shape with combinations of aberrations. Both are for 200 keV, spherical aberra-
tion of 1.3 mm, an aperture of 10 mrad, and (a) defocus of 800 Å, and twofold astigmatism of 50 Å,
(b) defocus of 800 Å, and twofold astigmatism of 200 Å. The scale bar in (a) is 5 Å

2.7 Aberration Correction

The most common electron lens is a rotationally symmetric lens similar to that
shown in Fig. 2.2. The fringe field in the gap focuses the electron beam. Lens
designers carefully shape the pole faces (of the magnetic material) near the gap
to minimize the optical aberrations of the lens. Scherzer showed theoretically
that a static round lens always has a positive spherical aberration. Theoretically,
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Fig. 2.15 Various single aberrations in phase contrast. All images are of a single gold atom at
200 keV with a 20 mrad aperture (to match Fig. 2.13): (a) no aberrations (scale bar 5 Å), (b) defocus
of 100 Å, (c) twofold astigmatism of 100 Å, (d) threefold astigmatism of 10,000 Å, (e) coma of
25,000 Å, and (f) spherical aberration of 0.057 mm

spherical aberration can be arbitrarily small (but still positive), but in practice
has reached a practical limit determined by the minimum size of the gap that
can be practically utilized (the specimen usually must be inserted in the gap)
and the maximum field strength that can be obtained by magnetic materials.
The current practice is to utilize non-rotationally symmetric multipole lenses to
produce negative spherical aberration to balance other positive spherical aberration
in the system in a process similar to the design of light optical systems (except for
multipole elements). Other approaches such as radio frequency microwave cavities
(for example, Oldfield [384]) and foil lenses (with charges on the axis, for example,
Hanai et al. [187]) have been tried but have not been aggressively pursued of late.
Currently non-rotationally symmetric lenses have been developed commercially to
correct for spherical aberrations.

Aberration correctors typically involve a rather sophisticated combination of
multipole focusing elements. The general shape of a quadrupole element is shown
in Fig. 2.16. The electron beam (optic axis) is into or out of the plane of the paper.
A single quadrupole converges in one direction and diverges in the other direction
(both are perpendicular to the optic axes), so more than one is needed to form an
image. It is this ability to both converge and diverge that permits a negative spherical
aberration unlike a round lens which is always converging. A set of three or four
quadrupoles can be made to function as a conventional lens.
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Fig. 2.16 General shape of a quadrupole lens. In the top view (on left) the electron travels into the
plane of the page in the center of the lens. The beam converges in one direction and diverges in the
other. A combination of quadrupole elements (side view on right) forms a lens. The magnetic field
alternates direction in each element

Multipole elements can be formed with any even number of poles. A two pole
element is just a deflector. Aberration correctors typically involve some combination
of quadrupoles, hexapoles, and octopoles. Attempts were made many decades ago
to build correctors but until recently did not significantly improve the images
probably due to the difficulty of aligning such a complicated system manually. For
example, Koops [291] demonstrated multipole correction of chromatic aberration
with combined electric and magnetic dipoles. Rose [427, 428], Hawkes [193–195],
and Septier [453] have given a review of the history of the development of aberration
correctors starting with Scherzer. Smith [462] has also reviewed current progress in
aberration-corrected microscopes. The recent success of correctors is largely due
to advances in computer technology. Fast computer hardware and algorithms for
automating the alignment of these complicated electron optical system is essential
for utilizing this technology.

Scherzer [428, 441] originally proposed an image corrector using three octopoles
with all electrostatic elements as in Fig. 2.17a. This corrector also includes two
cylinder lenses, an eight pole stigmator, and one round lens. Unfortunately, this
style of corrector has never been practical. A current probe corrector is shown
in Fig. 2.17b. This uses all magnetic elements with three combined octopole-
quadrupole units. There are four groups of four quadrupoles transferring the beam
from one octopole to the next, focusing the appropriate rays into the octopole plane.
In practice each quadrupole will have two set of quadrupoles rotated by 45◦ so
that the superposition can be rotationally aligned to the other elements and each
layer will have two pairs of dipole deflectors to steer the beam through the device
(not shown in the figure for simplicity). The objective lens (OBJ) is a traditional
round magnetic lens. Its position in each case is shown.
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Fig. 2.17 Approximate configuration of some octopole aberration (CS3) correctors.
(OBJ = traditional round magnetic objective lens, OCT = octopole). (a) The original
image corrector (CTEM) proposed by Scherzer [428, 441] using electrostatic elements.
(STIG = stigmator, CYL = cylinder lens, RND = round lens). (b) A current probe corrector (STEM)
using magnetic elements (similar to that described by Krivanek et al. [299], Q = quadrupole)

An approximate hexapole image corrector is shown in Fig. 2.18a. A single
hexapole field produces a third order (CS = C30) aberration correction at the
expense of adding significant second order aberrations (C23 = A2). Rose [425, 426]
realized that coupling two hexapole field with an inversion in between using
two round telescopic transfer lenses can cancel the second order aberrations
while retaining a negative third order aberration. Haider et al. [181] and Sawada
et al. [181, 435] have added a third hexapole to further improve the corrector by
correcting C56 = A5. An approximate configuration of a three hexapole probe
corrector is shown in Fig. 2.18b.

Multipole elements necessarily include many more non-rotationally symmetric
aberrations. This complicates the imaging somewhat. Hexapole correctors generally
involve significantly fewer elements (easier to use), but include several round lenses
which are physically larger and use more power.
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Fig. 2.18 Approximate configuration of some hexapole correctors. TL is a traditional round
transfer lens. OBJ is the objective lens and HEX is a hexapole. (a) Image corrector with two
hexapoles (Rose [425, 426]). (b) Probe corrector with three hexapoles (Haider et al. [181], Sawada
et al. [435])

2.8 More Aberrations

A set of multipole elements (quadrupole, hexapole, octopole, etc.) may be used to
correct for the unavoidable third order (and possibly higher) spherical aberration
of a rotationally symmetric round lens. However, in the process, these multipoles
by definition manifest a series of new rotational aberrations. Optical aberrations are
like many other annoying things in life. Getting rid of one aberration causes another
to pop up to take its place. These new aberrations must also be corrected. Some of
these new aberrations will be described next.

There are a variety of ways to express the deviation δ of the wavefront from
an ideal spherical wave (Fig. 2.9). For image points on the optic axis due to small
(nonzero) angles with respect to the optic axis δ could be expanded in a double
power series in angles αn

xαm
y , where αx and αy are components of α in the x and y

directions, respectively. For high-resolution small lateral deviations (x and y) from
the optic axis can be ignored, leaving just the axial aberrations. For example, there
are four third order terms with n+m = 3 of α3

x , α2
xαy , αxα

2
y , and α3

y . Any set of four
linear combinations of these terms (that are not linearly dependent) would also work.
The usual practice is to group these terms into a basis set of functions, each with
a particular rotational symmetry (not apparent in this set of functions). A compact
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(slightly devious) mathematical notation using a complex angle ω = αx+iαy having
a specific rotational dependence can generate a sequence of terms separated into
separate rotational orders. The imaginary component is a temporary mathematical
convenience and has no physical significance. Only the real part will be used in the
end. A particular power is:

ωn = (αx + iαy)
n = αn exp(inφ) (2.18)

where φ is the azimuthal angle and α is the polar angle. This expression has a
rotational order of n. Now expand χ = (2π/λ)δ in a double power series of ω and
its complex conjugate ω∗ with complex coefficients Cnm.

χ(ω) = 2π

λ
Real

[
∑

n=1

n+1∑

s=0

1

n + 1
Cnm(ω∗)n+1−sωs

]

(2.19)

= 2π
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Cnmαn+1 exp[i(2s − n − 1)φ]

]

(2.20)

where m = 2s − n − 1 is the rotational order of each term. Positive and negative m

with the same magnitude yield the same thing. Several terms in this sequence may
be repeated but only one of each form will be kept. The n = 0 term (C01) is just a
deflection (shift) and need not be considered here. Terms with m �= 0 will have two
terms with the same nm because Cnm is complex. Expanding to fifth order yields:
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(2.21)

C10 is defocus, C12 is twofold astigmatism, C21 is coma, C23 is threefold astig-
matism, C30 is third order spherical aberration, etc. In terms of polar angle α and
azimuthal angle φ this series can be written as:

χ(α, φ) = 2π

λ

∑

mn

1

n + 1
Cnmαn+1 cos[m(φ − φnm)] (2.22)

where this Cnm is real and φnm is the real rotational angle of each aberration. n and
m take the indicated values in Eq. 2.21. Writing out these terms in a Cartesian like
form to a little over third order yields:



32 2 The Transmission Electron Microscope

χ(αx, αy) = 2π
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(2.23)

where the Cnma,b coefficients are real valued. The sign of some of the m �= 0 terms
can be used either positive or negative (if used consistently) which can be a little
confusing. This Cartesian like representation has some computational advantages
because it does not require evaluating transcendental functions (like sin and cos)
which may take a significant number of CPU cycles (sin and cos can also be
efficiently generated using various recursion relations).

There are many ways to represent the aberrations. Every author seems to have a
favorite form. Several forms of notation are listed in Table 2.1. The notation used in
what follows is similar to that of Krivanek et al. [300, 301];

χ(α, φ) = 2π

λ

∑

mn

αn+1

n + 1

[
Cnma cos(mφ) + Cnmb sin(mφ)

]
(2.24)

n = 0, 1, 2, 3, . . . (2.25)

m = 0, 2, 4, · · · (n + 1) n odd (2.26)

= 1, 3, 5, · · · (n + 1) n even (2.27)

where n and m are positive integers and zero, and λ is the wavelength of the electron.
Purists might wish to separate subscripts n and m with a comma, but until tenth
order corrections becomes possible the comma may be dropped for convenience.
Aberrations with m �= 0 are sometimes referred to as parasitic because they are
mostly introduced by the corrector itself.

Although currently the most common, this form of identifying the aberrations
(with perhaps different symbols and names) is not the only possible method. These
aberrations are not orthogonal which can be an occasional problem. For example,
C23 and C43 have some small overlap which may make it difficult to separate
which one is present (the opposite is also true, C23 can be used to compensate C43
which might be helpful). Another possible approach is the Zernike polynomials (for
example, section 9.2 of Born and Wolf [42]) which are orthogonal over a unit circle
(multipole parasitic aberrations may not be practical). Sheppard [457] has also given
a general discussion of orthogonal aberration functions.
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Table 2.1 Some aberration symbols through fifth order in some different systems of notation

Haider [182, 496] Krivanek [299, 300] Sawada [434] Thust [489] Description

A0 C01 A1 Shift

C1 C10 O2 C20 Defocus

A1 C12 (a,b) A2 C22 Twofold astigmatism

3B2 C21 (a,b) P3 C31 Axial coma

A2 C23 (a,b) A3 C33 Threefold astig.

C3 C30 = CS O4 C40 Third order spher.

4S3 C32 (a,b) Q4 C42 Axial star aber.

A3 C34 (a,b) A4 C44 Fourfold astig.

4B4 C41 (a,b) P5 C51 Fourth order axial coma

4D4 C43 (a,b) R5 C53 Three-lobe aberr.

A4 C45 (a,b) A1 C55 Fivefold astig.

C5 C50 = CS5 O6 C60 Fifth order spher.

6S5 C52 (a,b) Q6 C62 Fifth order axial star

6R5 C54 (a,b) S6 C64 Fifth order rosette

A5 C56 (a,b) A6 C66 Sixfold astig.

Aberrations with (a,b) have two components at different azimuthal angles or equivalently a single
rotation angle and combined magnitude. Chromatic aberration is usually represented as CC

One method of displaying complicated aberrations is to show an image of the
phase error inside the objective aperture. A few different aberrations are shown
in Fig. 2.19 for 200 kV and a 70 mrad (half angle) objective aperture. Hexapole
correctors have been demonstrated to work to about this angle by Haider et al. [181]
(60 mrad at 200 kV) and Sawada et al. [435] (71 mrad at 60 kV). An octopole
corrector has been shown to correct to 40 mrad at 100 kV by Krivanek et al. [299].
The phase error is modulo 2π . Each image is scaled so that −π is black and +π is
white (the background is also arbitrarily set to white). The −π to +π transition
produces a sharp boundary which helps visualize the structure in the aberration
(visually similar to a contour plot). A properly tuned probe corrector would have
a uniform flat gray tone (all images in this figure have significant aberrations and
would not produce a sharply focused probe or image).

The traditional maximum allowed error is π/4 in each aberration at the maximum
angle (outer circumference of the objective aperture). For simplicity ignore the
azimuthal dependence (or equivalently look only in the maximum direction) and
equate the residual aberration as:

∣∣∣
2π

λ

αn+1
max

n + 1
Cnm

∣∣∣ ≤ π

4
(2.28)
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Fig. 2.19 Phase error
χ(α, φ) at 200 kV in an
objective aperture of 70 mrad
(140 mrad diameter). The
display is modulo 2π and
scaled such that −π is black
and +π is white. A zero
phase error appropriate for a
STEM probe corrector would
be a uniform gray tone.
Various aberrations have been
added. (a) C21a = 0.1µm,
(b) C23a = 0.1µm, (c)
C30 = 0.1µm, (d)
C34a = 0.8µm, (e)
C43a = 80µm, (f)
C56a = 800µm

Table 2.2 Maximum allowed aberration tuning errors for 30 mrad objective aperture (Eq. 2.29)
and 60 keV (λ = 0.04866 Å), 100 keV (λ = 0.03701 Å), 200 keV (λ = 0.02508 Å)

Aberration Expression 60 keV 100 keV 200 keV

C1m 2λ/(8α2) 1.35 nm 1.02 nm 0.70 nm

C2m 3λ/(8α3) 67.6 nm 51.4 nm 34.8 nm

C3m 4λ/(8α4) 3.00µm 2.28µm 1.55µm

C4m 5λ/(8α5) 125µm 95.2µm 64.5µm

C5m 6λ/(8α6) 5.01 mm 3.81 mm 2.58 mm

∣∣∣Cnm

∣∣∣ ≤ Tnm = (n + 1)

8αn+1
max

λ (2.29)

where Tnm is the tolerance for aberration Cnm. Some values are shown in Table 2.2.
In a probe corrector (STEM) all aberrations should be zero within this tolerance. In
an image corrector (CTEM) all aberrations except defocus, CS3 and CS5 should be
zero within this tolerance.
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Chapter 3
Some Image Approximations

At some level of approximation, human vision is a linear convolution of some
function of light intensity with a spatial resolution response function. This simple
linear image model is not quantitatively precise but allows for an easy interpretation
of everyday observations. Electron microscope images do not in general follow a
simple linear image model to any great precision. However it is useful to try to find
the conditions under which an electron micrograph can be interpreted as a linear
image of some physical property of the specimen.

In the linear image model the actual recorded image intensity g(x) is related to
the ideal image of the object f (x) by a linear convolution of the object function with
the point spread function h(x) of the instrument:

g(x, y) = f (x, y) ⊗ h(x, y) =
∫

f (x′, y′)h(x − x′, y − y′)dx′dy′

g(x) = f (x) ⊗ h(x) =
∫

f (x′)h(x − x′)dx′ (3.1)

where x = (x, y) is a two-dimensional position vector in the image plane. The point
spread function or PSF of the instrument is just the image of an isolated point in
the object or specimen. The symbol ⊗ represents the convolution. Using the Fourier
convolution theorem the linear image model can also be written as a product in
Fourier or reciprocal space.

G(k) = F(k)H(k) (3.2)

H(k) is the transfer function (or modulation transfer function, MTF) and is the
Fourier transform of h(x). G(k) and F(k) are the Fourier transforms of g(x)

and f (x), respectively. Capital letters will be used to denote a Fourier transformed
quantity and lower case letters will denote a real space quantity. Goodman [161] has
given an overview of the linear image model in light optics.
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3.1 The Weak Phase Object in Bright Field

Under restricted conditions the BF image in a CTEM may be considered as a linear
image model (for example, Erikson [122], Hansen [188], Lenz [309], Thon [487],
Hoppe [210]). It should be noted that Scherzer [442] stated most of the features of
this image model but did not take the final step of writing it as a convolution. This
section will discuss the image formation in the context of the CTEM although BF-
CTEM and BF-STEM are equivalent in this context due to the reciprocity theorem
(see Sect. 2.4).

The electrons incident on the specimen have a relatively high energy (approxi-
mately 100–1000 keV) as compared to the electrons in the specimen. If the specimen
is very thin, then the incident electrons pass through the specimen with only small
deviations in their paths and the effect of the specimen can be modeled as a simple
transmission function t (x). The electron wave function after passing through the
specimen is:

ψt(x) = t (x)ψinc(x) (3.3)

where ψinc(x) is the incident wave function. In the CTEM the incident electron wave
function (see Figs. 2.3 and 3.1) is approximately a plane wave of constant intensity
(ψinc ∼ 1). Later chapters will discuss the effects of specimen thickness on the
transmission function (i.e., t (x) will no longer be a simple scalar function).

Fig. 3.1 The positions of the
imaging wave functions in the
CTEM column
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The effect of the aberrations of the objective lens is to shift the phase of
each frequency component by a different amount (angle and spatial frequency are
proportional). If Ψt(k) is the Fourier transform of ψt(x) and Ψi(k) is the electron
wave function in the back focal plane of the objective lens, then:

Ψt(k) = FT [ψt(x)]
Ψi(k) = Ψt(k) exp[−iχ(k)] = Ψt(k)H0(k) (3.4)

where FT indicates a Fourier transform. The objective lens images this wave
function into a virtual image which is equivalent to an inverse Fourier transform
of the above equation (yielding ψi(x) from Ψi(k)). The projector lenses further
magnify this virtual image. Although magnification is the primary function of the
microscope this magnification can be ignored (in the math) if the image coordinates
are always referred to the dimensions on the specimen.

The actual recorded image is the intensity, or square magnitude of the image
wave function. Denoting the intensity in the recorded image as g(x) yields:

ψi(x) = FT −1[Ψi(k)]
g(x) = |ψi(x)|2 = |ψt(x) ⊗ h0(x)|2 (3.5)

where h0(x) is the complex point spread function of the objective lens (the inverse
Fourier transform of H0(k)).

In the weak phase object (WPO) approximation the specimen is assumed to be
very thin and composed mainly of light atoms. The primary effect of the specimen is
to produce a spatially varying phase shift in the electron wave function as it passes
through the specimen. This approximation can also be referred to as the Moliere
[358], WKB, or eikonal [444] approximation. If the specimen is also weak, then
the exponential phase factor can be expanded in a power series where only the low
order terms are important. If the incident wave function is a plane wave (ψinc = 1)
and the specimen is a weak phase object Eq. 3.3 becomes:

ψt(x) ∼ t (x) ∼ exp[iσevz(x)] ∼ 1 + iσevz(x) + · · · (3.6)

In later chapters vz(x) will be shown to be the projected atomic potential of the
specimen and σe is an appropriate scaling factor (both are real). It is possible to
use the opposite sign convention (reverse the sign of vz in the exponent, with a
corresponding change in H0(k)) because only the square modulus of ψ will be
important in the end. The result will be the same if all the signs are consistently
changed, however this sign change can lead to some confusion when comparing
different published versions of this theory in the literature (different authors use
different sign conventions). The sign convention used here is consistent with the
forward propagation of electrons (see Self et al. [452] for a discussion of the proper
sign). Expanding the expression for g(x) (Eq. 3.5) and keeping only the lowest order
terms in vz(x) (i.e., the weak phase object approximation) yields:
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g(x) =
∣∣∣
[
1 + iσevz(x) + O(v2

z )
]

⊗ h0(x)

∣∣∣
2

= |1 ⊗ h0(x) + iσevz(x) ⊗ h0(x)|2 + O(v2
z ) (3.7)

using the Fourier convolution theorem:

1 ⊗ h0(x) = FT −1 [δ(k) exp[−iχ(k)]] = 1 (3.8)

where δ(k) is the Dirac delta function. This leaves:

g(x) = 1 + σevz(x) ⊗ [
ih0(x) − ih∗

0(x)
]+ O(v2

z )

≈ 1 + 2σevz(x) ⊗ hWP (x) (3.9)

where a superscript ∗ denotes complex conjugation and hWP (x) is the point spread
function for BF imaging in the weak phase object approximation. The cross term
between the unscattered beam (=1) and the scattered beam (σevz(x)) can be
identified as an in-line hologram or interference between these two beams. Gabor’s
[155] original paper on holography was actually about BF-CTEM although it was
only tested on light optical holograms. The transfer function will be shown later to
add an extra phase shift to produce a strong interference between the two beams.

It is easier to state the Fourier transform of the point spread function (i.e., the
transfer function) than the PSF itself:

G(k) = FT [g(x)] = δ(k) + 2σeVz(k)HWP (k)

HWP (k) = FT [hWP (x)]

= i

2
{exp[−iχ(k)] − exp[iχ(k)]}

= sin χ(k) (3.10)

An oscillatory transfer function is about the worst thing that can happen.
This means that some spacings (i.e., spatial frequencies k) in the specimen will
be transmitted as bright (HWP (k) > 0) at the same time that other spacings are
transmitted as dark (HWP (k) < 0) because the transfer function is both positive
and negative.

The minimum of the aberration function χ(k) remains approximately flat for
a significant region near its minimum (see Fig. 2.11). If the defocus is adjusted
so than sin χ(k) is also near its minimum or maximum (±1) when χ(k) is flat,
then the transfer function will have a significant region of uniformly transferred
information (i.e., the transfer function is large and constant in a band of spatial
frequencies). Allowing sin χ(k) to deviate slightly from unity magnitude in the
passband increases the resolution slightly. Therefore look for conditions in which:

0.7 ≤ | sin χ(k)| ≤ 1.0
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χ(k) = −
[

2nD − 1

2

]
π ± π

4

nD = 1, 2, 3, · · · (3.11)

The minimum of the aberration function is found by setting its derivative equal to
zero. Using the dimensionless form of χ(K) (Eq. 2.11) and ignoring the astigmatism
(assumed small) yields:

∂χ(K)

∂K
= π(2K3 − 2DK) = 0

K2 − D = 0

K = √
D (3.12)

Next substitute this expression for K into the original expression for χ(K)

(Eq. 2.16) and solve for defocus D to make sin[χ(K)] ∼ ±1:

χ(K) = π(0.5(
√

D)4 − D(
√

D)2)

= π(0.5D2 − D2) = −0.5πD2

= −
[

2nD − 1

2

]
π − π

4
(3.13)

The optimum defocus is therefore:

D = √
2nD − 0.5

Δf = √
(2nD − 0.5)Csλ

nD = 1, 2, 3, . . . (3.14)

The special case of nD = 1 is referred to as Scherzer focus. Each positive
integer value of nD produces a band of uniformly transferred spatial frequencies
(Eisenhandler and Siegel [114]). The transfer function for several values of nD

is shown in Fig. 3.2. The broad passband moves to higher spatial frequencies as
nD increases but unfortunately also gets smaller so that the resolution cannot be
extended dramatically using large nD . Eisenhandler and Siegel [114] and Hoppe
[210] proposed using zone plates (in the objective aperture) to select appropriate
bands in the transfer function to improve resolution. Image reconstruction from a
defocus series may use these wide bands to advantage (for example, Kirkland et al.
[282]).

Ideally a transfer function would be flat and have the same sign over the range
of spatial frequencies that are transmitted to the image. The oscillatory nature
of HWP (K) can cause serious problems because it is not flat and changes sign.
Choosing an optimum defocus produces bands of uniform sign in the transfer
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Fig. 3.2 The phase contrast transfer function HWP for a weak phase object in bright field as a
function of the normalized spatial frequency K for different values of the defocus index nd =
1, 2, 3, 4. Astigmatism is assumed to be zero

function but the transfer function is still oscillating. Scherzer [442] realized that
it is better to limit the range of spatial frequencies so that the transfer function at
least has the same sign over its allowed range. An objective aperture is placed in
the back focal plane of the objective lens (see Fig. 3.1) which is conveniently the
Fourier transform plane. The radius in the aperture corresponds to spatial frequency
in the image. The objective aperture allows all rays within a maximum distance from
the optic axis to pass. This means that the objective aperture limits the maximum
spatial frequency in the image. If this maximum cutoff is made to coincide with
the first zero crossing of the transfer function (for Scherzer focus), then the transfer
function will have the same sign over its range. The first zero crossing is found in
dimensionless (normalized) form from:

χ(K) = π(0.5K4
max − DK2

max) = 0

0.5K2
max − D = 0

Kmax = √
2D (3.15)
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At Scherzer focus D = √
1.5. Substituting this value of D yields:

Kmax =
√

2
√

1.5 = kmax(Csλ
3)1/4

kmax =
(

6

Csλ3

)1/4

αmax = λkmax =
(

6λ

Cs

)1/4

(3.16)

This value of αmax is referred to as the Scherzer aperture. Together the Scherzer
aperture and Scherzer focus are referred to as the Scherzer conditions. The
corresponding resolution with Scherzer conditions is just:

ds >

(
Csλ

3

6

)1/4

= 0.64(Csλ
3)1/4 = 1/kmax (3.17)

This resolution is plotted versus spherical aberration in Fig. 3.3. This is a lower
bound because the transfer function HWP = 0 at this spacing and there is no
information transferred. There is some ambiguity in the choice of Eq. 3.11. Other
choices will change the value of various constants presented above by small
amounts. The differences appearing in the literature mainly reflect the allowed
variation of sin χ(K) in the pass band (0.7–1.0 chosen here).

Fig. 3.3 The coherent bright field phase contrast resolution in the weak phase object approxima-
tion as a function of spherical aberration Cs = CS3 for several different electron beam energies
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3.1.1 BF-CTEM with Aberration Correctors

In BF, small aberrations are needed to produce a π /2 phase plate (Scherzer [443],
Chang et al. [59], Lentzen [308], Erni [123]). For a CTEM with fixed fifth order
spherical (CS5) and controllable third order spherical aberration (CS3) and defocus
(Δf = −C10), Scherzer [443] found the following condition to produce a π/2±π/4
phase plate over the largest portion of the objective aperture:

Δf = −2(λ2CS5)
1/3 (3.18)

CS3 = −3.2(λC2
S5)

1/3 (3.19)

αmax = 7

4

(
λ

CS5

)1/6

(3.20)

with a resolution of:

d = 4

7

(
CS5λ

5
)1/6

(3.21)

Figure 3.4 shows a graph of the BF-CTEM transfer function with a third order
aberration corrector balancing the fifth order spherical aberration (CS5) with third
(CS3) and first order aberrations (Δf ). Successive terms in Eq. 2.6 have alternate
signs. The C5 term (fifth order spherical) is fixed and positive. The C3 term (third
order spherical) is set to be negative to balance C5 and the C1 term (defocus) is
positive to balance the C3 term.

3.2 Partial Coherence in BF-CTEM

In practice the electron microscope always has small deviations from the ideal.
The incident illumination is never exactly collimated and parallel to the optic axis
of the microscope. The electron energy is not completely monochromatic and the
objective and condenser lens currents are never perfectly stable. The degree of
collimation of the illumination incident on the specimen is related to the lateral
coherence (i.e., spatial coherence) of the incident electron wave function and the
stability of the beam energy and lens currents is related to the temporal coherence
of the imaging process. The imaging described in the previous section assumes that
these effects are negligible and that the imaging process is perfectly coherent. When
the effects of a small spread in illumination angles and a small spread in beam
energy and lens currents are included, the imaging process is said to be partially
coherent. An analytical derivation of the effects of partial coherence on the transfer
function in the weak phase object approximation has been given by Frank [142],
Fejes [127], and Wade and Frank [515].
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Fig. 3.4 BF-CTEM transfer function (top) with a third order aberration corrector with fixed fifth
order spherical aberration for an electron energy of 200 keV. Third order spherical aberration and
defocus are optimal adjusted to offset the fifth order spherical aberration using Scherzer’s method.
CS5 = 50 mm, CS3 = −59µm, Δf = −C1 = −136 Å. The bottom curve shows the phase error
χ and the various components due to each aberration

The transfer function oscillates both positive and negative. Partial coherence
(for example, defocus shift due to beam energy or obj. lens current fluctuations)
results in the superposition of adjacent portions of the transfer function (as in
Fig. 3.5). When the transfer function is oscillating quickly (at high spatial frequen-
cies) then partial coherence tends to reduce the transfer function to zero. Partial
coherence limits the maximum information content of the image in the electron
microscope by damping the high spatial frequency (large scattering angle) portion
of the transfer function.

The electron beam illuminating the specimen (formed by the condenser system)
will always have a small distribution of angles (see the right-hand side of Fig. 3.6).
To calculate the effect on the image first consider an illumination at a single angle
as shown in the left-hand side of Fig. 3.6. Previously in Eq. 3.3, the incident wave
function was ψinc ∼ 1, however, with the illumination at an angle β:

ψinc(x) = exp(2πikβ · x) (3.22)
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Fig. 3.5 BF-CTEM transfer function with two slightly different defocus values (solid line 600 Å,
and dashed 660 Å) as might be caused by fluctuations in the objective lens current. When these are
superposed in the image lower spatial frequencies are little affected but the high spatial frequencies
tend to average to zero

Fig. 3.6 Imaging with nonideal illumination. The incident electrons have an angle β. The
specimen scatters at an angle λk and the final angle into the objective lens is α (angles measured
with respect to the optic axis). A single electron trajectory is shown on the left and the total
illumination of a single point on the image is shown on the right. βmax is typically the condenser
aperture and αmax is the objective aperture
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where kβ = β/λ and β is the angle of the incident illumination (with respect to the
optic axis). Note that kβ is a two-dimensional vector because β can vary in both
the polar and azimuthal directions. The transmitted wave function (Eq. 3.3) now
becomes:

ψt(x) = t (x) exp(2πikβ · x) (3.23)

Usually the condenser system will deliver a small cone of illumination angles
onto the specimen. Typically each illumination angle will be incoherent with other
illumination angles so the images due to each illumination angle should be summed
incoherently by adding intensities |ψ |2 and not amplitudes ψ . It is possible to
operate a field emission gun to produce a coherent spread of illumination angles
(in which case amplitudes and not intensities would be summed), however, this case
will not be considered here. If p(kβ) represents the (probability) distribution of
(incoherent) illumination angles, then Eq. 3.5 becomes:

g(x) =
∫

|ψi(x)|2 p(kβ)d2kβ

=
∫ ∣∣[t (x) exp(2πikβ · x)

]⊗ h0(x)
∣∣2 p(kβ)d2kβ (3.24)

A small spread in energy of the incident electron is equivalent to a small (incoherent)
spread in defocus values due to the chromatic aberration of the objective lens.
Fluctuations in the focusing currents in the objective lens also produce an incoherent
spread in defocus values. When this spread in defocus values is combined and
included in the image:

g(x) =
∫

|ψi(x)|2 p(kβ)p(δf )dδf d2kβ

=
∫ ∣∣[t (x) exp(2πikβ · x)

]⊗ h0(x,Δf + δf )
∣∣2 p(kβ)p(δf )dδf d2kβ (3.25)

where δf is the fluctuation in defocus and p(δf ) is the distribution of this
fluctuation. Both p(kβ) and p(δf ) are normalized such that their integrated value is
unity. This expression for g(x) is formidable and should be treated numerically in
general (see later chapters). However if the deviations from the ideal are assumed
very small and the specimen is assumed to be a weak phase object, a modified
transfer function can be obtained.

First examine the expression for the wave function in the image plane for one
illumination angle and one defocus value:

ψi(x) = [
t (x) exp(2πikβ · x)

]⊗ h0(x) (3.26)
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Figure 3.6 shows that the tilt angle can appear in either the objective lens angle
α or the incident wave function ψinc. To see this mathematically take the Fourier
transform of ψi and use the Fourier convolution theorem:

FT
{[t (x) exp(2πikβ · x)] ⊗ h0(x)

} = T (k + kβ)H0(k) (3.27)

Now with a change of variable:

T (k + kβ)H0(k) = T (k′)H0(k′ − kβ) (3.28)

The inverse Fourier transform is now an integration over k′ instead of k (over all
space) but gives the same result. This means that the image plane wave function can
also be written as:

ψi(x) = t (x) ⊗ h0(x, kβ) (3.29)

Using h0(x, kβ) will make the analytical calculation of the transfer function much
simpler. This approximation would not be appropriate for thick specimens because
the effect of the specimen is no longer a simple multiplicative function.

If the specimen is a weak phase object (Eq. 3.6), then the expression for the final
image intensity will be similar to Eq. 3.9 except that the point spread function h0(x)

of the objective lens will be integrated over illumination angles and defocus values
as in Eq. 3.25. If kβ is small, then the leading background constant can also be
assumed to be close to unity (as in Eq. 3.8):

1 ⊗ h0(x, kβ) ∼ 1 (3.30)

The integral of the transfer function over a spread in illumination angles and
defocus values using the dimensionless form of χ(K) is:

H0(K) =
∫

exp{−iχ(K + Kβ,D + Dp)p(Dp)p(Kβ)dDpd2Kβ (3.31)

where the sign of Kβ has been changed to positive for simplicity (i.e., the integrand
is symmetric) and:

χ(K + Kβ,D + Dp) = π [0.5(K + Kβ)4 − (D + Dp)(K + Kβ)2] (3.32)

p(Kβ) and p(Dp) are the distribution of illuminations angles Kβ and defocus
deviations Dp. The simplest assumption of a Gaussian distribution for each has
the advantage of allowing an analytical solution.

p(Kβ) = 1

πK2
s

exp(−K2
β/K2

s ) (3.33)

p(Dp) = 1√
πDs

exp(−D2
p/D2

s ) (3.34)
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where Ks is the 1/e width of the spread in illumination angles and Ds is the 1/e

spread in defocus values. Taylor expanding χ(K,D) to lowest order in Kβ and Dp:

χ(K + Kβ,D + Dp) ∼
χ(K,D) + Kβ · W1 + Dp W2 + DpKβ · W3 + · · · (3.35)

where

W1 = ∂χ(K,D)

∂K
= 2π(|K|2 − D)K (3.36)

W2 = ∂χ(K,D)

∂D
= −πK2 (3.37)

W3 = ∂2χ(K,D)

∂K∂D
= −2πK (3.38)

W1 and W3 are two-dimensional vector quantities. Equation 3.31 now becomes:

H0(K) = 1

πK2
s

√
πDs

exp[−iχ(K,D)]
∫

exp[−iKβ · W1

−iDpW2 − iDpKβ · W3 − K2
β/K2

s − D2
p/D2

s ]d2KβdDp (3.39)

First do the integration over Kβ :

H0(K) = 1√
πDs

exp[−iχ(K,D)]
∫

exp[−0.25K2
s |W1 + DpW3|2 −

iDpW2 − D2
p/D2

s ]dDp (3.40)

Next do the integral over Dp:

H0(K) = 1√
1 + EK2

exp

[
−iχ(K,D) + i

D2
s K

2
s W1 · W3W2

4(1 + EK2)

]

× exp
[

− 0.25K2
s |W1|2 + D2

s [(0.5K2
s W1 · W3)

2 − W 2
2 ]

4(1 + EK2)

]
(3.41)

Aside If the cross term W3 = 0 (implying E = 0) is neglected a somewhat more
elegant expression results:

H0(K) = exp[−iχ(K,D) − 0.25K2
s |W1|2 − 0.25D2

s W
2
2 ] (3.42)
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Next substitute for the intermediate variables:

H0(K) = exp

[
−i

πK2

1 + EK2

(
0.5K2(1 − EK2) − D

)]

× 1√
1 + EK2

exp

[−π2K2
s (K2 − D)2K2 − 0.25π2D2

s K
4

1 + EK2

]
(3.43)

where E = π2K2
s D2

s

Now take the imaginary part to form the transfer function for the weak phase
object image approximation (Eqs. 3.2 and 3.10) and substitute the dimensional form
of the electron microscope parameters:

HWP (k) = sin

[
πλk2

1 + εk2

(
0.5Cs(1 − εk2)λ2k2 − Δf

)]

× 1√
1+εk2

exp

[
−[πλksk(Csλ

2k2−Δf )]2 + 0.25(πλΔ0k
2)2

1+εk2

]
(3.44)

where ε = (πλksΔ0)
2, ks = Ks(Csλ

3)−1/4 and Δ0 = Ds

√
Csλ. This transfer

function (Eq. 3.44) should be substituted into the image model (Eqs. 3.9 and 3.10).
Apart from the extra term with ε (typically small) the oscillatory portion of
the transfer functions is the same as the coherent case. The main change is the
addition of a damping envelope that attenuates the transfer function at high spatial
frequencies. In a practical sense β = λks is the condenser (illumination) semiangle
and Δ0 is approximately the rms value of all of the appropriate fluctuations
multiplied by the chromatic aberration Cc.

Δ0 ∼ Cc

√(
ΔE

E

)2

+
(

2
ΔI

I

)2

+
(

ΔV

V

)2

(3.45)

where E, I , and V are the electron energy, lens currents, and acceleration voltage,
respectively, and ΔE, ΔI , and ΔV are the 1/e width of their fluctuations.

A graph of the WPO transfer function with (Eq. 3.44) and without (Eq. 3.10)
partial coherence is shown in Fig. 3.7 for typical values of the electron optical
parameters. It is interesting to note that the cross term W3 produced the correction
ε in the transfer function which can move the zero crossings in the transfer function
but seems to have a negligible effect under Scherzer conditions.
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Fig. 3.7 The BF phase contrast transfer function with and without partial coherence (CA =
condenser aperture)

3.2.1 Aberration Correctors and Partial Coherence

It is straightforward but somewhat tedious to add higher order aberrations to the
above expressions for partial coherence. The transfer function with the fifth order
spherical aberration is:

HWP (k) = 1√
1 + εk2

× sin

[
πλk2

1 + εk2

(
1

3
CS5(1 − 2εk2)λ4k4 + 0.5CS3(1 − εk2)λ2k2 − Δf

)]

× exp

[
−[πλksk(CS5λ

4k4 + CS3λ
2k2 − Δf )]2 + 0.25(πλΔ0k

2)2

1 + εk2

]
(3.46)

Although an aberration corrector can produce very high resolution it is still
very sensitive to partial coherence. Figure 3.8 shows the transfer function for high
resolution with small amounts of partial coherence. The attenuation envelope for
defocus spread (chromatic aberration) is not changed much by the corrector. Very
small amounts of chromatic aberration destroy the transfer function and BF phase
contrast with a geometric aberration corrector very likely requires a chromatic
aberration corrector as well.

Terms such as the spherical aberration coefficient Cs = CS3 are, however,
no longer really constant. The spherical aberration of the round objective lens
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Fig. 3.8 The BF phase contrast transfer function (for thin specimens) with an aberration corrector
and partial coherence for an electron energy of 300 keV. Third order spherical aberration and
defocus are optimal adjusted to offset the fifth order spherical aberration using Scherzer’s method.
The condenser illumination angle was βmax = 0.05 mrad, and CS5 = 30 mm, CS3 = −38.7µm,
Δf = −97.6 Å. Two different defocus spreads are shown to illustrate the effect of chromatic
aberration

is essentially constant because it is due to the fixed geometry of the magnetic
material used to shape the focusing fields and to lowest order insensitive to small
fluctuations in the lens current (which instead produces fluctuations in defocus). An
aberration corrector generates a large negative CS3 from a combination of strong
focusing multipole fields. Fluctuations in currents in these elements can produce
fluctuations in the net CS3 coefficients as well as all of the other dozen or so
aberration coefficients. There can be of order 100 or more focusing currents (etc.)
in the corrector that have their own fluctuations. These potentially cause all of the
aberration coefficients to fluctuate (more study is needed here to determine how
these all interact; may vary with the specific design of each corrector). Various
groupings of the multipoles combine to form each aberrations (some elements may
be a part of more than one aberration). If the cross terms between aberrations are
ignored for simplicity, the aberration phase factor becomes:

H0(K) = exp

[

−iχ(K,D) −
∑

k

0.25Wk

∣∣∣∣
∂χ

∂Ck

∣∣∣∣

2
]

(3.47)

where Wk is the width of the fluctuations for parameter Ck and the summation is over
all aberration components (Ck such as defocus, spherical aberrations Cs3, Cs5, etc.)
and the illumination angle. Even though the aberration corrector can effectively
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negate the existing aberrations in the main (round) objective lens, the fluctuations
in the corrector causing partial coherence will be centered about the much larger
aberrations (such as CS3) of the original objective lens making this effect much
larger than might be expected.

It may be easier to numerically integrate over small fluctuation in all param-
eters. Gauss–Hermite quadrature is very efficient for integration over a Gaussian
weighting. With this many parameters it might even be worthwhile performing a
Monte Carlo integration over a range of parameter values (which becomes more
efficient when integrating over more than four dimensions). It is also not clear how
fluctuations in the various aberration coefficient are coupled (mathematically in the
aberration function and practically through common coils and currents).

3.3 Detector Influence (CTEM)

The detector that records the image may itself have a large influence on the image
quality. Currently the detector is usually a CCD camera (plus scintillator). Film
(or plates) were the most common detector in the not so distant past. It was
common to record the image at not very high magnification and then magnify
further in the darkroom enlarger, in which case the film may produce a large effect.
Film (or plates) have a transfer function of their own (for example, Downing and
Grano [98]). CCD detectors also have an associated transfer function which can be
significant (Thust [488]). The effects of the detector can be included in the image
by convolving the electron image (Eq. 3.5) with detector transfer function hdet(x):

g(x) = |ψt(x) ⊗ h0(x)|2 ⊗ hdet(x) (3.48)

The detector may reduce the contrast in the high-resolution component of an image
(for example, lattice fringes) by a large factor (like two or three).

3.4 Incoherent Imaging of Thin Specimens (CTEM)

The electron microscope image is generated from the electrons scattered by the
specimen. For the electron wave scattered from two points of the specimen to
interfere the incident electron wave from the condenser system must be coherent
over the distance between these points (i.e., the specimen is not self-luminous).
The illuminating electrons (using a thermionic source) are produced by a spatially
incoherent, quasi-monochromatic source with nonzero size. The source size is
typically translated into a maximum condenser angle βmax (see Fig. 3.6). The
electron rays incident on the specimen are not perfectly parallel but subtend a
small cone of angles βmax at the specimen plane. The lateral coherence length
perpendicular to the optic axis (see section 10.4.2 of Born and Wolf [42]) of the
illuminating electron wave function is approximately given by:
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Δxcoh ∼ 0.16λ

βmax
(3.49)

If the coherence length is much smaller than the resolution element of the image,
then the imaging will be essentially incoherent. If the coherence length is much
bigger than the resolution element, then the imaging process will be essentially
coherent. The resolution element of the image is approximately d ∼ λ/αmax,
where αmax is the maximum objective angle (i.e., the size of the objective aperture).
Combining these two expressions yields an approximate criteria for the image
coherence:

βmax << 0.16αmax coherent imaging

βmax >> 0.16αmax incoherent imaging (3.50)

In between these two extremes the image is partially coherent.
If the image is coherent, then the amplitudes ψ of the scattered electrons add, and

if the image is incoherent, then the intensities of the scattered electrons |ψ |2 add.
The final image recording process is only sensitive to the intensity of the electrons
and not their amplitudes. This means that phase contrast must have a coherent
image process to be sensitive to the phase of the electron via some interference
process. Reducing the coherence of the imaging process should also reduce the
phase contrast transfer function. The ratio βmax/αmax can be used to control the
coherence of the imaging process.

Because the phase contrast image will likely disappear in an incoherent image
the transmission function should include the possibility of amplitude contrast.
Assuming that the specimen is a weak phase, weak amplitude object yields a
transmission function:

t (x) ∼ exp[iσevz(x) − u(x)] ∼ 1 + iσevz(x) − u(x) + · · · (3.51)

where u(x) is the amplitude component of the specimen transmission function
which can arise from scattering outside of the objective aperture (it is preceded by a
minus sign because electrons cannot be created with elastic scattering). Alternately
u(x) can be considered as the next term in the Taylor expansion of exp[iσvz(x)],
where u(x) ∝ v2

z (x). Both σevz(x) and u(x) are small compared to unity. The
expression for the image intensity (Eq. 3.25) now becomes:

g(x) =
∫

|ψi(x)|2 p(kβ)p(δf )dδf d2kβ

=
∫ ∣∣[(1 + iσevz(x) − u(x)) exp(2πikβ · x)

]⊗ h0(x,Δf + δf )
∣∣2

×p(kβ)p(δf )dδf d2kβ (3.52)
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The objective aperture will play a significant role in the following derivation so it
should be included with the point spread function h0(x) or equivalently the transfer
function:

H0(k) = exp[−iχ(k,Δf + δf )]A(k) (3.53)

where A(k) is the aperture function:

A(k) = 1 ; λ|k| = α < αmax

= 0 ; otherwise (3.54)

and αmax is the maximum semiangle allowed by the objective aperture.
Now expand the integrand keeping only the terms of the lowest order in σevz(x)

and u(x) and drop the explicit reference to the independent arguments for simplicity:

g(x) =
∫

{| exp(2πikβ · x) ⊗ h0|2

+[exp(2πikβ · x) ⊗ h0]∗[iσevz exp(2πikβ · x) ⊗ h0]
−[exp(2πikβ · x) ⊗ h0]∗[u exp(2πikβ · x) ⊗ h0]
+[complex conjugate]}p(kβ)p(δf )dδf d2kβ (3.55)

The first term is a constant of order unity that does not vary with position in the
image. The rest of the right-hand side is rather unpleasant but can be simplified
a little. Because h0(x) is simplest to write in reciprocal space, look at the Fourier
transform of the term containing vz(x), and for simplicity drop explicit reference to
the defocus Δf and its fluctuations δf :

FT {[exp(2πikβ · x) ⊗ h0]∗[iσevz exp(2πikβ · x) ⊗ h0]}
= [δ(k − kβ)H0(−k)]∗ ⊗ [iσeV (k + kβ)H0(k)]

= iσe

∫
δ(k′ − kβ)H ∗

0 (−k′)V (k + kβ − k′)H0(k − k′)dk′

= iσeV (k)H ∗
0 (−kβ)H0(k − kβ) (3.56)

where δ(k) is the Dirac delta function.
This expression is now a simple product so when inverse Fourier transformed

back into real space σevz(x) is convolved with a new form of the point spread
function. Repeating this procedure with the amplitude component and combining
the complex conjugate terms yield:

g(x) ∼ C0 + 2σevz(x) ⊗ hWP (x) − 2u(x) ⊗ hWA(x) (3.57)
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where C0 is a background constant of order unity:

C0 =
∫

| exp(2πikβ · x) ⊗ h0|2p(kβ)p(δf )dδf d2kβ (3.58)

and the transfer function for a weak phase object is:

FT [hWP (x)] = HWP (k)

= Imag
∫

H0(kβ − k)H ∗
0 (−kβ)p(kβ)p(δf )dδf d2kβ (3.59)

and the transfer function for a weak amplitude object is:

FT [hWA(x)] = HWA(k)

= Real
∫

H0(kβ − k)H ∗
0 (−kβ)p(kβ)p(δf )dδf d2kβ (3.60)

With the assumption of a small Gaussian spread of defocus (see Eq. 3.34) the
integral over defocus can be done analytically yielding an expression for the transfer
function for a weak phase object:

HWP (k) =
∫

A(kβ)A(kβ − k) sin[χ(kβ − k) − χ(kβ)]

× exp{−0.25π2λ2Δ2
0[|kβ − k|2 − |kβ |2]2}p(kβ)d2kβ (3.61)

and an expression for the transfer function for a weak amplitude object:

HWA(k) =
∫

A(kβ)A(kβ − k) cos[χ(kβ − k) − χ(kβ)]

× exp{−0.25π2λ2Δ2
0[|kβ − k|2 − |kβ |2]2}p(kβ)d2kβ (3.62)

The only difference between these two transfer functions is the switch between sin
and cos. If kβ is large then neither of these integrals can be done analytically and
both must be done numerically (in two dimensions).

The phase and amplitude transfer functions are shown in Figs. 3.9 and 3.10,
respectively, using Scherzer defocus and the Scherzer aperture. The phase contrast
transfer function is initially similar to the coherent transfer (see Fig. 3.2) function
but decays to zero as the condenser angle βmax is increased as expected (i.e.,
when the image is incoherent there cannot be any interference to produce phase
contrast). The amplitude contrast transfer function, however, transforms from an
oscillatory function into a smoothly falling function similar to the transfer function
in normal light optics (Black and Linfoot [37]). Note also that the first zero
of the transfer function has moved by almost a factor of two in the incoherent
(βmax/αmax = 1) case. The improvement in resolution from incoherent imaging
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Fig. 3.9 BF-CTEM transfer function for weak phase objects with increasing condenser angle
βmax as a function of dimensionless spatial frequency K (Scherzer defocus and aperture αmax).
βmax/αmax = 0.1, 0.2, 0.5, 1.0. The phase contrast transfer function is zero when the image
process is incoherent βmax/αmax ≥ 1

Fig. 3.10 BF-CTEM transfer function for weak amplitude objects with increasing condenser
angle βmax as a function of dimensionless spatial frequency K (Scherzer defocus and aperture
αmax). βmax/αmax = 0.1, 0.2, 0.5, 1.0. The amplitude contrast transfer function is similar to normal
light optics when the image process is incoherent βmax/αmax ≥ 1
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over coherent imaging has been known for a long time (Rayleigh [411] and
Goodman [161]). The essential features of this section were discussed by Hanszen
[188], Hanszen and Trepte [189], and Thomson [486].

3.5 Annular Dark Field STEM

The order of the optical components of the STEM (Fig. 2.4) is reversed from that
of the CTEM (Fig. 2.3). The objective lens is before the specimen and forms a
focused probe on the specimen. The portion of the electrons transmitted through
the specimen that fall on the detector form the image brightness at one point in the
image. A whole image is built up by scanning the focused probe over the specimen
and recording the transmitted intensity at each position of the probe. In bright field
the detector integrates (incoherently) over a very small angle centered about zero
scattering angle, and in annular dark field (ADF) the detector integrates everything
except the center regions. The ADF-STEM image would be equivalent to the BF-
CTEM image using incoherent hollow cone illumination by the reciprocity theorem
(Engel [117]). In practice a CTEM condenser system may not be able to handle
the large angles (typically 100–300 mrad at 100 keV) equivalent to the angles in
the ADF-detector. Alternately an image similar to an ADF-STEM image but with
reversed contrast may be obtained using BF-CTEM with a large solid cone that is
mirror image of hollow cone illumination (Kirkland [272]). The simplified image
model discussed in this section can be referred to as the incoherent image model.

A focused probe is calculated by integrating the aberration wave function
exp[−iχ(k)] over the objective aperture with translation to a particular point in the
image. Figure 3.11 shows the relative placement of the wave functions in the STEM
column. The aberrated electron probe wave function in the plane of the specimen
when deflected to position xp is:

ψp(x, xp) = Ap

∫ kmax

0
exp[−iχ(k) − 2πik · (x − xp)]d2k (3.63)

where λkmax = αmax is the maximum angle in the objective aperture and Ap is a
normalization constant chosen to yield;

∫
|ψp(x, xp)|2d2x = 1 (3.64)

With this normalization the total incident intensity in the electron probe is also
unity (alternately the probe integral could be scaled to yield the actual value of
the beam current in some appropriate choice of units). The probe is really just
the demagnified image of the source and this expression assumes that the electron
source (the electron gun demagnified by the condenser system) has a negligible
size in the plane of the specimen (discussed later in Sect. 3.5.2). The probe size is
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Fig. 3.11 Electron wave functions in the STEM column

limited instead by the aberrations of the objective lens. A dedicated STEM would
usually use a high brightness field emission gun with a small virtual source size so
that there is enough current left after demagnification to get a large enough signal to
detect. Deflecting the beam to different positions on the specimen changes the angles
through the objective lens. At high resolution this angle is of order 100 Å divided by
the focal length of the objective lens (of order 1 mm) producing a deflection angle
of order 0.01 mrad which is negligible compared to a typical angle of 10 mrad in the
objective aperture (large deflection angles would change the apparent aberrations
but only occur at low magnification).

The electron probe passes through the specimen and is modulated by the
specimen transmission function t (x) (identical to the transmission function for the
CTEM). t (x) is in general a complex valued function for a weak phase, weak
amplitude object (see Eq. 3.51). The transmitted wave function is:

ψt(x, xp) = t (x)ψp(x, xp) (3.65)

Again a discussion of the effects of specimen thickness on the transmission function
will be deferred to later chapters. This wave function is then diffracted onto the
detector plane (represented by a Fourier transform).

Ψt(k, xp) = FT [ψt(x, xp)] =
∫

exp(2πik · x)ψt (x, xp)d2x (3.66)
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The intensity of this wave function |Ψt(k, xp)|2 as a function of scattering angle λk
is the convergent beam electron diffraction CBED pattern.

The CBED pattern is incoherently integrated over the detector geometry and the
result is the final STEM image signal g(xp) for one probe position xp.

g(xp) =
∫

|Ψt(k, xp)|2D(k)d2k (3.67)

where D(k) is the detector function.

D(k) = 1 for kDmin ≤ k ≤ kDmax (3.68)

= 0 otherwise (3.69)

where λkDmin and λkDmax are the inner and outer angles of the ADF detector. This
process is repeated for each probe position xp.

Equation 3.67 is difficult to intuitively relate to any specific structure in the
specimen (later chapters will treat this equation more exactly using numerical
calculations). However with some approximations a linear image model can be
derived that is easier to understand. The ADF detector should go to very large angles
(of order 200–300 mrad or more at 100 keV) so that all electrons that are incident
on the specimen either fall on the ADF detector or go through the central hole
in the ADF detector. This means that the signal formed by integrating all of the
electrons in the central hole in the ADF detector is just one minus the ADF signal
(where the total incident intensity is assumed to be unity). This effective signal
from the central hole in the ADF detector is also equivalent to the BF-CTEM
signal (via the reciprocity theorem) with a very large condenser illumination angle
βmax/αmax >> 1. Therefore the ADF image process is incoherent if kDmin >> kmax
(see Sect. 3.4). If the outer dimension of the ADF detector is essentially infinite then
the large diameter of the central hole in the ADF detector produces an incoherent
image. This means that phase contrast should be negligible and the image should be
predominately amplitude contrast. Simple imaging approximations for ADF-STEM
have been considered by Misell et al. [348], Cowley [75], Spence [472], Jesson and
Pennycook [244], Treacy and Gibson [494], Loane et al. [317], and Jones and Nellist
[249].

An approximate linear image model for thin specimens assuming an incoherent
image process is:

g(x) = f (x) ⊗ hADF(x) (3.70)

where the specimen function f (x) is approximately the probability for scattering to
the large angles of the ADF detector. If the specimen is modeled as a collection of
isolated atoms with the signal from each atom j at position xj denoted by Sj (xj )

the total signal is approximately:
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f (x) =
∑

j

Sj (xj) (3.71)

Sj (xj ) ∼
∫

D(k)
∂σj (x)

∂ks

d2ks =
∫ kDmax

kDmin

∂σj (x)

∂ks

d2ks (3.72)

∂σ/∂ks is the partial cross section (the square of the scattering factor, calculated in
the eikonal or Moliere approximate in Eq. 5.18) for atom j to scatter to angle ks .
The scattering from each atom is assumed to be independent of the scattering
from all other atoms (which in general may not be true, see later chapters for
thick specimens). With the incoherent image assumption an ADF-STEM image
of a very thin specimen is essentially a mass thickness map of the specimen. The
calculation with this approximation is simple enough to perform interactively on
most computers and is useful to quickly build intuition on the imaging process
although it may not be quantitatively accurate. This simple incoherent image model
also is close to the assumed image models for a variety of sophisticated image
restoration algorithms such as the Richardson-Lucy [320, 421] and maximum
entropy methods (for example, [16]) so these methods can then be easily applied
to ADF-STEM images (for example, Kirkland [269, 277]).

The point spread function (with the assumption of an incoherent image model) is
just the intensity distribution in the focused probe. The aberration limited probe is:

hADF(x) = |ψp(x)|2

= Ap

∣∣∣∣

∫ kmax

0
exp[−iχ(k) − 2πik · x]d2k

∣∣∣∣

2

(3.73)

The constant Ap is chosen to normalize the point spread function to have a total
integrated value of unity. Furthermore if the astigmatism is negligible, then the
azimuthal integral can be done analytically leaving a one-dimensional integral for
the probe intensity:

hADF(r) = Ap

∣∣∣∣

∫ kmax

0
exp[−iχ(k)]J0(2πkr)kdk

∣∣∣∣

2

(3.74)

where J0(x) is the zeroth order Bessel function of the first kind and r is the radial
coordinate. χ(k) is a function of only the magnitude of k when astigmatism is not
present. This integral cannot be done analytically and must be done numerically.
The point spread function is plotted in Fig. 3.12 versus position (on the specimen).
Figure 3.13 shows a more condensed form of this graph for various values of
defocus and objective aperture. The graph has been scaled to make hADF(0) = 1.
Figure 3.13a shows the probe profile for Scherzer defocus and aperture with a full
width at half max of approximately 0.43(Csλ

3)1/4.
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Fig. 3.12 The STEM probe
intensity (approximate point
spread function) when
astigmatism and source size
are negligible versus position.
(200 keV, Cs = 1.3 mm,
Δf = 571 Å,
αmax = 9.4 mrad)

Fig. 3.13 The STEM probe intensity or approximate point spread function (solid line) when
astigmatism and source size are negligible versus normalized radius R = r(Csλ

3)−1/4 for
various values of the normalized defocus D = Δf (Csλ)−1/2 and objective aperture Kmax =
kmax(Csλ

3)1/4. (a) D = 1.2, Kmax = 1.56 (Scherzer conditions), (b) D = 0.80, Kmax = 1.22, (c)
D = 1.5, Kmax = 1.5, (d) D = 2.5, Kmax = 2.5. The total integrated current is shown as a dashed
line. All aberrations higher than third order have been ignored
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Fig. 3.14 The approximate STEM transfer function corresponding to the defocus values and
objective apertures used in Fig. 3.13 versus the normalized spatial frequency K = k(Csλ

3)1/4.
Source size is assumed negligible. All aberrations higher than third order have been ignored

The transfer function is just the inverse Fourier transform of the point spread
function. With azimuthal symmetry (i.e., no astigmatism), and neglecting the source
size the transfer function is:

HADF(k) = A′
p

∫ ∞

0
hADF(r)J0(2πkr)rdr (3.75)

where A′
p is the another normalization factor. The transfer function is plotted in

Fig. 3.14 and BF-CTEM and ADF-STEM are compared in Fig. 3.15.
It is interesting to compare an aberration-corrected probe and an uncorrected

probe (Maccagnano-Zacher et al. [326]). Figure 3.16 shows a probe at 100 keV
with and without an aberration corrector. The curves are normalized to have the
same integrated current. It is very surprising that the corrected probe is dramatically
higher than the uncorrected probe. The tails of the probe at large radius have a very
large contribution to the total current even though they appear small in this type of
graph. An aberration corrector can increase the image contrast a lot more than might
be expected.
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Fig. 3.15 Comparison of ADF-STEM and BF-CTEM transfer functions for the same spherical
aberration, Cs = 1.2 mm at 200 keV. Δf = 550 Å and αmax = 9.5 mrad for STEM and Δf =
670 Å for BF-CTEM with a condenser half angle of 0.1 mrad and a defocus spread of 100 Å

Fig. 3.16 Comparison of ADF-STEM probe with and without an aberration corrector at 100 keV.
The uncorrected probe has Cs = 1.3 mm, Δf = 694 Å, and αmax = 10.3 mrad. The corrected
probe has Cs = Δf = 0 and αmax = 25 mrad. Both curves are normalized to have the same total
(integrated) current



3.5 Annular Dark Field STEM 65

3.5.1 Minimum Probe Conditions

It is difficult to define an optimum defocus and aperture to produce the best probe
for the highest resolution. In Fig. 3.13d the full width at half maximum (FWHM) is
clearly much smaller than the FWHM for Scherzer conditions (Fig. 3.13a); however,
the tails (small wiggles at large radius) are dramatically increased in size. A small
value at large radius can produce a large signal when integrated over a larger
circumference. The total current inside a radius r in the probe is:

I (r) = 2π

∫ r

0
|ψp(x′)|2r ′dr ′ (3.76)

This current is shown in Fig. 3.13 as a dashed line. The extra factor of r inside the
integral (Eq. 3.76) can shift the signal to a larger radius in a significant manner.
The radius containing half of the current is a reasonable definition of the probe size
(many other definitions are possible) and can be formally identified as the Sparrow
[199, 468] condition of resolution. The Rayleigh criteria (see, for example, Hecht
[199]) uses a width containing 59% of the total current. The Sparrow criteria is
arbitrarily chosen here, although there are equally good reasons for either. This
FWHM of the integrated intensity is a good measure of where the signal comes
from.

A plot of this FWHM radius versus both defocus and objective aperture size is
shown in Fig. 3.17. The minimum probe rms radius appears to be at defocus D =
0.87 and objective aperture Kmax = 1.34 (Fig. 3.13b). This produces the smallest
tails but increases the FWHM (minimum rms radius approx. 0.43(Csλ

3)1/4) to about
twice that of the probe with Scherzer conditions. Scherzer conditions seem to be
a compromise between a small full width half maximum and large tails. Mory et
al. [362] have also considered the optimum probe defocus for STEM imaging and
microanalysis. Crewe and Salzman [84], Krivanek et al. [299], and Intaraprasonk
et al. [226] have discussed optimizing the probe with spherical aberration through
fifth order. There is also a long history of balancing aberrations in incoherent light
optics similar to the treatment here, starting with Maréchal [331] (see also section
4.4 of O’Neil [386] for balancing 3rd and 5th order spherical aberrations) and Black
and Linfoot [37] and including annular objective apertures (for example, Barakt and
Houston [21]).

A summary of the optimum condition found so far is given in Table 3.1 for BF-
CTEM and ADF-STEM. The original paper of Intaraprasonk et al. [226] found an
optimum value of CS3 = C30 for a given CS5 = C50, however, assumed a maximum
phase error of λ/4 instead of the traditional π/4 which leads to an incorrect result.
The results in the next to last column of Table 3.1 have been corrected for this
problem (see the discussion in [277]). An example is shown in Fig. 3.18. With just
the fifth order aberration CS5, the probe is wider and has significant probe tails.
Although small, the probe tails contain a large current (signal) due to a larger area
(probe size 2.1 Å as defined above). Optimizing CS3, αmax (objective aperture) and
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Fig. 3.17 The normalized rms radius containing half of the total probe current rrms(Csλ
3)−1/4

of the STEM probe as a function of the normalized objective aperture kmax(Csλ
3)1/4 and the

normalized defocus Δf (Csλ)−1/2 with a large CS = CS3 (no aberration corrector)

Table 3.1 Summary of optimum values for m = 0 aberrations when CS5 or CS3 is fixed, for
phase contrast BF-CTEM [442, 443] and ADF STEM (this section and [226] with modification)

Parameter BF-CTEM ADF-STEM

CS5 Fixed Ignored Fixed Ignored

CS3 −3.2(λC2
S5)

1/3 Fixed −2.289(λC2
S5)

1/3 Fixed

Δf −2(λ2CS5)
1/3 √

1.5CS3λ −0.983(λ2CS5)
1/3 0.87

√
CS3λ

αmax
7
4 (λ/CS5)

1/6 (6λ/CS3)
1/4 1.513(λ/CS5)

1/6 1.34 (λ/CS3)
1/4

dmin
4
7

(
CS5λ

5
)1/6

0.67(CS3λ
3)1/4 0.403

(
CS5λ

5
)1/6

0.43(CS3λ
3)1/4

Chromatic aberration and all geometric aberrations higher than 5th order have been ignored

defocus can correct a significant fifth order aberration CS5 to a near optimum probe
(probe size 0.65, corrected and 0.61 Å, ideal). Chromatic aberration has not been
include here and will make the probe larger in all three cases.

This analysis is convenient and helps understand the interactions of these
geometrical aberrations, but is somewhat oversimplified. All aberrations correctors
currently in use have a large collection of multipoles, which will make many other
parasitic m �= 0 aberrations. Considering up to fifth order (Table 2.1) there are 25
aberrations, so selecting only three of these (Δf , CS3, and CS5) misses most of the
problem. Some of this will be addressed more thoroughly in later sections.
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Fig. 3.18 The STEM probe profile for 100 keV with CS5 = 50 mm and αmax = 31.0 mrad. The
dashed curve has just CS5. The solid curve includes CS5 and the optimum CS3 = −0.0481 mm and
Δf = −C10 = −86.7 Å (Table 3.1). The ideal curve (solid circles) with no aberrations overlaps
the optimized curve (solid line). All other geometrical and chromatic aberrations were zero. Each
curve normalized to be unity at the origin

3.5.2 Source Size

The probe is just the image of the electron source, which can also contribute to the
probe size. The brightness of a source is defined as:

β = j

πα2
(3.77)

where j is the current density in the probe and α is the convergence half angle (πα2

is the solid angle). Brightness is conserved in a magnetic lens but may vary with
beam energy. Various condenser lenses and the objective lens are used to demagnify
the image of the source onto the specimen. More source demagnification produces
less current (and a smaller source contribution to the probe size) in a predictable
manner. If the probe is approximated as a disk of diameter dS (the source size) and
uniform intensity, then the current in the probe IP = j (πd2

S/4) and the probe size
are related as:

IP = 1

4
π2α2βd2

S (3.78)

The probe current is shown in Fig. 3.19 for two different types of electron sources.
A probe current of about 10–100 pAmp is needed for practical imaging. Only a field
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Fig. 3.19 Approximate probe current versus source size from brightness for a cold field emitter
(CFEG) with brightness β = 109 amp/(cm2sr) for two different aperture sizes and a typical LaB6
source with β = 106 amp/(cm2sr)

emission source can produce enough current to produce a source size of about 1
Angstrom (or smaller) and is preferred. This simple approximation is a convenient
means of estimating the source contribution from just a measurement of the probe
current and aperture size although it may not be that accurate.

Each part of the electron source can emit electrons that travel through the
microscope and form an image of their own in some way. Each of these images is
offset in position equivalent to the shift in position on the source demagnified by the
lenses in the microscope. This can be summarized as a further convolution with an
effective source size in the specimen plane (including appropriate demagnification).

g(x) = f (x) ⊗ hADF(x) ⊗ hsource(x) (3.79)

The source contribution is typically taken as a Gaussian, and may become the
dominate factor at high resolution. If there are other nondirectional instabilities
in the microscope, then some of these may be treated in a similar manner. For
example, if the stage has some small random vibrations convolving the final image
with a small Gaussian may be an appropriate way to model this effect (stage
vibrations likely have a preferred direction so the convolution kernel should match
this asymmetry).
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3.5.3 Defocus Spread

As in the CTEM, small fluctuations in the accelerating voltage, lens current and the
thermal energy spread in the source itself produce a small spread in defocus values.
The ADF-STEM transfer function does not vary as dramatically with defocus as the
BF-CTEM transfer function so the effect of defocus spread is small on the ADF-
STEM transfer function and can frequently be ignored. In a simple approximation
the ADF-STEM transfer function (Eq. 3.75) can be integrated over a small range of
defocus values to approx. the effects of these small fluctuations, leaving an effective
transfer function:

heff
ADF(r) =

∫ ∞

−∞
hADF(k,Δf )p(Δf )d(Δf ) (3.80)

H eff
ADF(k) =

∫ ∞

0
heff

ADF(r)J0(2πkr)rdr (3.81)

where p(Δf ) is the probability distribution of defocus values. This integration
may also be done in Fourier space in this linear imaging approximation. Typically
p(Δf ) is a Gaussian distribution about its mean value, which is easily performed
numerically using a Gauss–Hermite quadrature formula (5–9 points are probably
sufficient in most cases), which conveniently includes a Gaussian weighting of the
integrand (for example, section 4.6 of Press et al. [406], or chapter 25 of Abramowitz
and Stegun [2]). Sheppard and Wilson [456] have considered partial coherence in
scanning microscopy in a more general manner.

The STEM probe shape for several different values of defocus spread is shown in
Fig. 3.20 using similar optical conditions as in Fig. 3.8 for the CTEM. The probe is
much less sensitive to defocus spread as CTEM phase contrast, because it does not
oscillate rapidly. The main effect is to add long probe tails (small wiggles at large r).
The corresponding transfer function for each probe is shown in Fig. 3.21. Longer
probe tails do not change the maximum resolution much; however, the intermediate
spatial frequencies are significantly reduced.

3.5.4 Aberration Tunning Errors

Most (if not all) aberration correctors in current use utilize multipole optics, which
produces a multitude of new parasitic aberrations (22 total to 5th order) that have to
be corrected. Figure 3.22 compares two probes with and without a single parasitic
aberration. Both probes have been normalized to have the same total integrated
intensity. The surface plot of two probes has been merged into one for easy
comparison. Half of the plot has no aberrations and half has a significant amount
of C45b. This multipole aberration produces small probe tails with a variety of
small bumps. The tails are a small amplitude but have a very large area resulting
in a significant reduction is the center intensity of the probe, which will result in a
significant reduction of contrast (signal) in the image.
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Fig. 3.20 Approximate ADF-STEM probe shape with different amounts of defocus spread for a
beam energy of 300 keV. The objective angle was αmax = 30.4 mrad, and CS5 = 30 mm, CS3 =
−27.7µm, Δf = −48.0 Å. Three different defocus spreads are shown to illustrate the effect of
chromatic aberration (ddf = defocus spread). Each curve is normalized to be unity at the origin

Fig. 3.21 Approximate ADF-STEM transfer function with different amounts of defocus spread,
using the same parameters as in Fig. 3.20. Each curve is normalized to be unity at the origin
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Fig. 3.22 Calculated
ADF-STEM probe profile
(100 keV, 30 mrad) with and
without aberrations. The
portion for y < 0 is an ideal
probe with no aberrations,
and the other portion has
C45b = 0.4 mm. Both probes
are normalized to have the
same total integrated
intensity. Source size and
defocus spread have been
ignored

None of these parasitic aberrations will be corrected exactly to zero but will
have a small random nonzero error (as in Table 2.2). There are enough that it is
appropriate to think about the statistical properties of the probe. Figure 3.23 shows
the azimuthal average of an average probe (calculated in two dimensions, in 5
by 5 Å with 1024 by 1024 pixels) with a random uniform distribution of errors
in the aberrations within the allowed tolerance (for a π/4 error in the aberration
function as in Table 2.2, including positive and negative values) averaged over 500
probes (100 keV, 30 mrad) with different random errors. This would generally be
considered to be accurately tuned and usable. Some aberrations (such as C21 and
C41) can shift the probe position so each probe center was found numerically to
produce the smallest probe size.

Most probes with random tuning errors show semi-random fluctuations that
may vary azimuthally (for example, see Fig. 3.22). The average over many sets
of random errors becomes smooth and symmetrical so only the azimuthal average
(after summation) is shown. The mean probe is slightly larger but similar to the ideal
probe. The probe tails (small values at large radius) can be particularly troublesome
because the intensity grows as the square of the radius. The distribution of probe
sizes in the set of probes in Fig. 3.23 is shown in Fig. 3.24. Probe size is defined as
the diameter enclosing one half of the probe intensity (i.e., the Sparrow resolution
criteria). The ideal size is shown as a single line. The resulting probe is larger
than expected and has some random variation is size. This distribution is at least
similar to a log-normal distribution (i.e., the log of the size has a normal or Gaussian
distribution) typical of sizes that cannot become negative by definition. There is a
slight asymmetry with more values on the large side. This random variation of sizes
may change the apparent observed image contrast by almost a factor of two and
greatly hinder efforts to quantitatively analysis aberration-corrected image. Each
aberration will also have some instability (perhaps only a few parts per million) from
noise in the driving electronics etc. (Kirkland [275]), but the measurement error is
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Fig. 3.23 Calculated azimuthally averaged ADF-STEM probe profile (100 keV, 30 mrad) with
random aberration (up to and including 5th order) tunning errors uniformly distributed within the
allowed tolerance in Table 2.2. Focus and astigmatism are assumed to be manually optimized and
were not included. Each curve is normalized to be unity at the origin. A defocus spread of 50 Å has
been included but source size has not. An ideal probe shape (including defocus spread) is shown
as a dashed line for comparison

probably a much larger effect in typical cases. Any systematic errors in aberration
measurement may also have a large detrimental effect.

A maximum phase error of π/4 for a single aberration may be about right
but when more aberrations are included allowing a phase error of π/4 for each
aberrations is overly optimistic. The error will accumulate, so allowing the same
error for each of an arbitrary number of aberrations (as in Fig. 3.24) as seems to be
the current practice, leads to a problem. If the random errors are assumed to add
in quadrature, then the maximum error in each of N aberrations should be π

4
√

N
.

For N =22 aberration the maximum allowed tuning error should be π/19 which
may not be practical. Correcting to higher and higher order includes an unexpected
penalty.

3.6 Compensation

An aberration corrector typically has some control over several low order aberra-
tions but will not be able to directly control aberrations higher than some upper limit.
The aberrations in the chosen form of the aberration function as in Eq. 2.27 are not
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Fig. 3.24 Calculated distribution of STEM probe sizes (100 keV, 30 mrad) with random aberration
tunning errors (up to and including 5th order) uniformly distributed within the allowed tolerance
in Table 2.2 as in Fig. 3.23 for 500 probes with different random errors. Focus and astigmatism
are assumed to be manually optimized and were not included. A defocus spread of 50 Å has been
included but source size has not. The ideal probe size (including defocus spread) is shown as a
single line

orthogonal. Lower order aberrations can be used to partially compensate small high
order aberration of the same azimuthal symmetry over some small range of objective
angle which can be referred to as compensation. The useful range of a corrector can
be extended a little further than its original design might seem to imply. Scherzer
focus can be said to compensate third order spherical aberration with defocus. In
a multipole corrector system there will be a large number of aberrations. Each
aberration will have a different optimal maximum objective aperture (as in Scherzer
focus) but there has to be a single aperture size for all aberrations, so each aberration
has to be compensated for an arbitrary aperture size chosen for some other reason.
Kirkland et al. [264] have reviewed some approaches to compensation.

The process can be generalized to any combination of aberrations with the same
azimuthal symmetry (same m and ab subscripts in Eq. 2.27). Aberrations with
different azimuthal symmetry are orthogonal and independent (cannot compensate
each other). Ideally, all aberrations should be zero in a STEM probe corrector,
and all but the m = 0 aberrations (defocus, CS3 and CS5) should be zero in a
CTEM image corrector. For simplicity the following discussion will use just the a

aberrations (and drop the a subscript) but can equally apply to a or b aberrations.
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3.6.1 Two Aberrations at a Time

To compensate a high order fixed aberration Cn+2 with a single variable lower
order aberration Cn with the same m find the value to minimize the total squared
aberration. Drop the a and m subscripts for simplicity. Minimize the total squared
error in the objective aperture:

min =
∫ αmax

0

∫ π

0

[
2π

λ

(
Cn

αn+1

n + 1
+ Cn+2

αn+3

n + 3

)]2

cos2[mφ]αdφdα (3.82)

The aberration may be both a type or b type or the combination at a specific angle
(ratio) φ0. αmax is the range of the objective aperture. Integrate over φ and drop
leading constant factors:

min =
∫ αmax

0

(
Cn

αn+1

n + 1
+ Cn+2

αn+3

n + 3

)2

αdα (3.83)

Differentiate with respect to Cn and equate to zero to find the minimum:

∫ αmax

0
2

(
Cn

αn+1

n + 1
+ Cn+2

αn+3

n + 3

)
αn+1

n + 1
αdα = 0 (3.84)

Integrate and drop constant leading factors:

[
Cn

α2n+4

(2n + 4)(n + 1)2
+ Cn+2

α2n+6

(2n + 6)(n + 3)(n + 1)

]αmax

0
= 0 (3.85)

Cn

1

(2n + 4)(n + 1)
+ Cn+2

α2
max

(2n + 6)(n + 3)
= 0 (3.86)

leaving:

Cn = −Cn+2
(2n + 4)(n + 1)

(2n + 6)(n + 3)
α2

max = −Cn+2
(n + 2)(n + 1)

(n + 3)2 α2
max (3.87)

For example:

C23 = −C43
α2

max(8)(3)

(10)(5)
= −0.480C43α

2
max (3.88)

C12 = −C32
α2

max(6)(2)

(8)(4)
= −0.375C32α

2
max (3.89)

An example of a STEM probe with C23a compensating C41a is shown in Fig. 3.25.
The probe tails are typically increased by a small amount with compensation
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Fig. 3.25 Compensation at 100 kV and obj. apert. of 40 mrad. Shown is a calculated image of
the STEM probe with white being a larger electron intensity. (a) C43a = 0.30 mm, (b) C23a =
−230 nm. (c) C43a compensated with C23a from (a) and (b). (d) Unaberrated probe (scale bar
is 2 Å)

although the intensity is too small to see in this figure. As the objective angle, α, or
the higher order aberration get larger, this equation becomes less accurate although
it is sometimes possible to find other values of the lower aberration to improve
the compensation. The image of a single heavy atom in BF-CTEM should show a
similar behavior (compare Figs. 2.13 and 2.15).

3.6.2 Three Aberrations at a Time

Repeating the derivation for two aberrations but including three aberrations with the
highest order fixed and the two lower orders variable:
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min =
∫ αmax

0

(
Cn

αn+1

n + 1
+ Cn+2

αn+3

n + 3
+ Cn+4

αn+5

n + 5

)2

αdα (3.90)

Differentiate with respect to first Cn and then Cn+2 and equate both to zero and
integrate to find the minimum (after some tedious algebra) leaving:

Cn

1

(n + 1)
+ Cn+2

α2
max(2n + 4)

(2n + 6)(n + 3)
= −Cn+4

α4
max(2n + 4)

(2n + 8)(n + 5)

Cn

1

(n + 1)
+ Cn+2

α2
max(2n + 6)

(2n + 8)(n + 3)
= −Cn+4

α4
max(2n + 6)

(2n + 10)(n + 5)
(3.91)

Now solve Eqs. 3.91 (two equations in two unknowns with messy coeff.).
Subtract and factor:

Cn+2

[
(2n + 6)

(2n + 8)
− (2n + 4)

(2n + 6)

]
1

(n + 3)

= −Cn+4α
2
max

[
(2n + 6)

(2n + 10)
− (2n + 4)

(2n + 8)

]
1

(n + 5)
(3.92)

Insert back into original to obtain:

Cn = −Cn+2
α2

max(2n + 6)(n + 1)

(2n + 8)(n + 3)
− Cn+4

α4
max(2n + 6)(n + 1)

(2n + 10)(n + 5)
(3.93)

More elaborate combination might be possible, but the algebra just gets more
tedious.

3.7 Confocal Mode for Weak Phase Objects

The light optical scanning transmission microscope (in confocal mode) has exhib-
ited improved performance relative to a conventional microscope, but what happens
in the electron microscope? A simple imaging theory is similar to that of the light
optical microscope (Wilson and Sheppard [537]). Nellist et al. [371] have also
described the theory of imaging in a double corrected instrument.

Confocal mode is a combination of STEM and CTEM (Fig. 2.8). A focused elec-
tron probe is raster scanned across the specimen (much like a STEM). The electrons
transmitted through the specimen are imaged by a collector lens (much like CTEM)
onto a detector (usually a small point like detectors).

The incident probe focused onto the specimen has a complex wave function as
given by Eq. 3.63. The wave transmitted through the specimen is given by Eq. 3.65.
The probe is scanned across the specimen, and in confocal mode there is also a
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collection lens that images the transmitted probe onto a detector. The collection
lens adds a second complex points spread function. If the probe is scanned (moved)
across the specimen, the transmitted beam must be inversely scanned so that there
is no net motion on the detector. Alternately the electron beam may be fixed and the
specimen moved in a raster fashion. The theory is slightly less complicated in this
alternate mode (used here). The transmitted wave function is:

ψT (x, xP ) = hP (x)t (x + xP ) (3.94)

where x is position in the specimen plane and xP is the position of the specimen
(or probe). t (x) is the complex transmission function of the specimen, and hP (x) =
ψP (x) is the point spread function of the probe forming lens (Eq. 3.63). The wave
function incident on the detector is:

ψD(x, xP ) = hC(x) ⊗ [hP (x)t (x + xP )]
=
∫

hC(x′)hP (x′ − x)t (x′ − x − xP )d2x′ (3.95)

where hC(x) is the point spread function of the collector lens. The subscript P or C

refers to the probe or collector lens, respectively. If the detector is a point at position
x = 0, then:

ψD(x = 0, xP ) =
∫

hC(x′)hP (x′)t (x′ − xP )d2x′

= [hC(x)hP (x)] ⊗ t (x) (3.96)

In practice the detector must have a nonzero size so this is an unphysical approx-
imation to simplify the mathematics. The transmitted intensity for a given probe
position with this approximation is therefore:

g(x) = ∣∣[hp(x)hc(x)] ⊗ t (x)
∣∣2 (3.97)

where the distinction between x and xP has been dropped for simplicity.
A transfer function is only defined for a linear system but this is still rather

nonlinear. Approximate the transmission function of the specimen as a weak phase
object as in Eqs. 3.6 to obtain a simplified linear theory:

t (x) = exp[iσvz(x)] ∼ 1 + iσvz(x) (3.98)

or weak amplitude object (Eq. 3.51):

t (x) = exp[u(x)] ∼ 1 + u(x) (3.99)
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Using the weak phase object approximation, and keeping only the lowest terms in
vz, the image model becomes:

g(x) ∼ ∣∣[1 + iσvz(x)] ⊗ (hp(x)hc(x))
∣∣2 (3.100)

∼ 1 ⊗ (hphc) + 2Re[iσvz ⊗ (hphc)] (3.101)

∼ 1 + 2σvz ⊗ hWPA (3.102)

hWPA(x) = Re[ihp(x)hc(x)] (3.103)

The transfer function is just the 2D Fourier transform of hWPA. Using azimuthal
symmetry the transfer function for weak phase objects in confocal mode is:

HWPA(k) =
∫ rmax

0
Re[ihp(r)hc(r)]J0(2πkr)rdr (3.104)

Remember that both hp(x) and hc(x) are complex valued functions. To repeat this
derivation in the weak amplitude approximation just remove the factor of i, to obtain
the transfer function for weak amplitude objects:

HWAA(k) =
∫ rmax

0
Re[hp(r)hc(r)]J0(2πkr)rdr (3.105)

Confocal mode has twice as many optical parameters and can produce a larger
variety of features in the transfer function. Some examples are shown in Fig. 3.26
for the same set of parameters as ADF-STEM in Fig. 3.14. The confocal transfer
function is compared to the BF-CTEM transfer function (both in the weak phase
approximation) in Fig. 3.27. This particular choice of parameters produces a transfer
function similar to ADF-STEM except that it is reversed in contrast (negative instead
of positive). There is most likely a difference in the signal strength as well which is
not apparent in this representation.

3.8 Phase and Amplitude Contrast Revisited

The theory presented above is a traditional view and seems plausible, but it is worth
checking a little. Figure 3.28 shows how a pure amplitude and pure phase object
(combined into a single image) are imaged in BF-CTEM and ADF-STEM, using
methods that will be discussed later. The letters “AMP.” are a amplitude object
and the letters “PHASE” are a phase object. The image transmission function is
given by:

t (x) = exp(ip − a) (3.106)



3.8 Phase and Amplitude Contrast Revisited 79

Fig. 3.26 Confocal transfer functions in the weak phase approximation (Eq. 3.104) for the same
aberrations as ADF-STEM in Figs. 3.13 and 3.14. Both the probe and collectors lens aberration are
the same in each graph

Fig. 3.27 Comparison of confocal and CTEM transfer functions in the weak phase approximation
for the same spherical aberration, Cs = 1.2 mm, at 200 keV. Δf = 550 Å and αmax = 9.5 mrad for
confocal. Both the probe and collectors lens aberration in confocal were the same. Δf = 670 Å
for BF-CTEM with a condenser half angle of 0.1 mrad and a defocus spread of 100 Å (Scherzer
conditions)
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Fig. 3.28 Phase and
amplitude contrast in
BF-CTEM and ADF-STEM.
(a) Pure amplitude object, (b)
pure phase object. The object
was formed from the
superposition of (a) and (b)
and imaged as a (c)
BF-CTEM image and (d)
ADF-STEM image

where a and p are the amplitude and phase components (respect.) with a value of
0.05 on the appropriate letters and zero otherwise. The BF-CTEM and the ADF-
STEM images contain both amplitude and phase contrast features. It is more the
specimen that determines which form of contrast will be in the image. The ADF-
STEM image only renders the high frequency components from the edges (scattered
at high angle onto the ADF detectors). However, every specimen is composed
of many small atoms, each of which scatters to high angle so this edge effect
is not in a real specimen composed of many individual atoms (sharp edges, or
points are everywhere). The simple theory is very helpful in developing an intuitive
understanding of electron microscope image but there is still a need for more
detailed simulations to more completely understand what the images mean. The
property of coherence and incoherence also plays a large role in image formation



Chapter 4
Sampling and the Fast Fourier Transform

To go further with image calculations requires a detailed numerical calculation
using a computer program. The mathematics gets too complicated (or long) to
perform analytically with pencil and paper. This chapter gives some necessary
computer background prior to calculating images in later chapters. The computer
imposes its own set of rules that must be understood and dealt with to perform these
calculations. Experienced computer users may prefer to skip this chapter.

Image simulation or image processing with the computer presumes that the
image is somehow represented inside the computer. A digital computer naturally
operates on numerical data. Therefore an image must be represented as a two-
dimensional array of numbers inside the computer. Each number is one pixel or
spot in the image whose intensity is proportional to its numerical value. The trick
is to have a sufficiently large number of pixels, so that when they are displayed
as an image the individual numbers or pixels are not individually distinguishable.
Sampling the image in this manner leads to some specific rules and limitations that
are summarized in this chapter.

The fast Fourier transform or FFT is one of the most efficient computer
algorithms available. The FFT computes the Fourier transform of discretely sampled
data in a minimum amount of computer time. Image simulation, such as the
multislice method, is usually organized around the FFT to reduce the computer time
required for simulations. The mechanism of the FFT is closely coupled to discretely
sampled data and is also included in this chapter.

4.1 Sampling

In practice each image is calculated in a rectangular grid of Nx×Ny pixels or picture
elements as shown in Fig. 4.1. The images are sampled at Nx discrete points along
x and Ny discrete points along y and form a supercell with dimensions of a × b in
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Fig. 4.1 Sampling of an
image of size a × b in a plane
perpendicular to the optic axis
of the microscope. There are
Nx × Ny pixels with a size of
a/Nx × b/Ny in real space
and 1/a × 1/b in reciprocal
or Fourier transform space.
Neither the pixels or the
image have to be square

real space. Figure 4.2 shows the visual effects of changing the number of pixels in
an image for the special case of Nx = Ny and a = b. Each pixel has dimensions
a/Nx × b/Ny in real space and has a single value associated with it that is the
average over the area of the pixel (or in the case of a complex wave function two
values representing the real and imaginary parts). The real space coordinates take
on only discrete values of:

x = iΔx i = 0, 1, 2, · · · , (Nx − 1) (4.1)

y = jΔy j = 0, 1, 2, · · · , (Ny − 1) (4.2)

where Δx = a/Nx and Δy = b/Ny .
The Fourier transform of this image will also have Nx × Ny pixels but the

dimensions of each pixels change to 1/a ×1/b and the reciprocal space coordinates
take on values:

kx = iΔkx i = 0, 1, 2, . . . , (Nx − 1) (4.3)

ky = jΔky j = 0, 1, 2, . . . , (Ny − 1) (4.4)

where Δkx = 1/a and Δky = 1/b. The supercell does not have to be square and
there may be a different number of pixels in x and y although this is usually less
efficient. Curiously, the longest dimension of the supercell will be reversed in real
and reciprocal space (i.e., a tall narrow supercell in real space becomes short and
wide in reciprocal space).

Discrete sampling also imposes a limit on the maximum spatial frequency in the
image of:

|kx | <
1

2Δx

|ky | <
1

2Δy
(4.5)
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Fig. 4.2 The visual effects of changing the number of pixel in an image. (a) 256 × 256 pixels,
(b) 64 × 64 pixels, (c) 32 × 32 pixels, and (d) 16 × 16 pixels. Each pixel has 8 bits. The image
is a bright field STEM image of a gold particle on an amorphous carbon film recorded on a VG
HB-501 STEM (Cs = 1.3 mm, 100 keV). The 2.35 Å gold lattice fringes are barely visible in the
center of the particle. The scale bar in (a) is approximately 20 Å

This is referred to as the Nyquist limit. In principle this limit may be different in each
direction; however, in practice the larger limit should be reduced to the smaller so
that the effective resolution is isotropic in the image (i.e., to avoid sampling artifacts
in the image). If the sampling size Δx or Δy is too large, then the signal is under-
sampled and aliasing occurs. Figure 4.3 shows the effect of under-sampling a sine
wave. The high frequency sine wave appears to be a low frequency sine wave if it
is under-sampled. This should be avoided by making the sampling size smaller or
explicitly limiting the bandwidth of the original signal.

It is often overlooked that the sampling in real space and reciprocal space is
coupled. Increasing the sampling in real space decreases the sampling in reciprocal
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Fig. 4.3 The effect of under-sampling a function. The original function is shown as a solid line.
It is under-sampled at regular intervals (circles). The apparent signal is shown as a dashed line.
Under-sampling causes high frequencies to be improperly aliased as low frequencies

space and vice versa. Figure 4.4 illustrates some effects of how pixel size (sampling)
changes the scale in real and reciprocal space. Methods of image calculation
discussed in later chapters were used to calculate these images. The top row
increases in size (full scale dimension) while keeping the total number of pixels
fixed. The bottom row is the corresponding images of the objective aperture (of the
same size in total angle) in reciprocal space for each image above it. Figure 4.4a, d
have good sampling in real space (small pixel size) but poor sampling in reciprocal
space (large pixels, only a few inside the aperture). Figure 4.4c, f have poor sampling
in real space (large pixels) but good sampling in reciprocal space (small pixels, many
inside the aperture, but high spatial frequencies may be missing). A compromise in
the middle (Fig. 4.4b, e) is sometimes the best choice.

The numerical value associated with each pixel is itself discretely sampled. This
value must be encoded as a finite number of bits (one bit has a value of 0 or 1)
for each pixel in the computer. The human eye can distinguish at best about 30–
50 different shades of gray. Figure 4.5 shows the effects on human perception of
varying the number of bits in each pixel. The computer hardware is usually capable
of conveniently handling data in units as small as 8 bits at a time. Therefore about
8 bits of information is needed for each pixel to display the image. Any substantial
amount of calculation with only 8 bits per pixels will however quickly get into a
lot of trouble. Rounding each value to 8 bits introduces an error of at least one in
28 = 256. Even worse, dividing two eight bit integer numbers truncates the result
to the lowest integer (for example, 1/2 = 0, 128/50 = 2, with integer arithmetic)
which can introduce very large errors for each arithmetic operation between pixels.
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Fig. 4.4 The relationship between (a–c) real space (image) and (d–f) reciprocal space (Fourier)
sampling for different supercell sizes (full scale size in real space). The real space image is of
strontium titanate (Sr3TiO2, unit cell, a0 = b0 = c0 = 3.9051 Å) in BF-CTEM at 200 kV, CS3 =
0.7 mm, obj. aperture of α = 15 mrad, defocus Δf = 500 Å, defocus spread 50 Å, condenser
illumination angle 0.5 mrad. Each image is 256×256 pixels. (d–f) are the corresponding objective
aperture images in reciprocal space, for each of a–c. The supercell size is (a, d) 3a0 × 3b0, (b, e)
6a0 × 6b0, (d, f) 9a0 × 9b0

An image simulation may require thousands or millions of operations on each pixel.
Therefore during image simulation each pixel should be represented as a floating
point number with much more than 8 bits per pixel. Most computer hardware is
equipped to handle 32-bit single precision (typically there is one sign bit, 8 exponent
bits, and 23 mantissa bits) and 64-bit double precision floating point arithmetic.
Single precision (32 bits) gives about six decimal digits of accuracy per pixel and
is usually sufficient for most image calculations. Each arithmetic operation between
two single precision floating point numbers can be thought of as adding an error of
about ±1 in 106 or 1 in 6 digits. This error is sometimes referred to as roundoff
error, and calculations with a finite number of bits is sometimes referred to as
finite precision arithmetic. Although this error may seem insignificant it may be
necessary to perform a million operations on some numbers, so the errors can add
up to be significant even with single precision (32-bit) floating point arithmetic.
A good computer program should be organized in such a way as to minimize the
effects of roundoff error. Storing several images of sizes of 512×512 pixels or more
requires a lot of memory, so double precision is usually not used to keep the memory
requirements to a reasonable level. During numerical simulation each pixels should
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Fig. 4.5 The effect of limiting the number of bits in each pixel. (a) 4 bits/pixel, (b) 3 bits/pixel,
(c) 2 bits/pixel, and (d) 1 bit/pixel. Each image was normalized to fill the available gray scale. The
image is a bright field STEM image of a gold particle on an amorphous carbon film recorded on a
VG HB-501 STEM (Cs = 1.3 mm, 100 keV). The 2.35 Å gold lattice fringes are barely visible in
the center of the particle. The scale bar in (a) is approximately 20 Å (Fig. 4.2a is the same image
with 8 bits per pixel)

be stored as a 32-bit (or more) floating point number and for the final displayed
result 8 bits is probably sufficient.

4.2 Discrete Fourier Transform

Image simulation and image processing frequently use a discrete Fourier transform
(DFT) to perform convolutions or to convert from reciprocal space to real space and
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vice versa. There are several different ways to define a DFT that differ mainly in the
placement of the minus signs and normalization constants. The specific definition
of the Fourier transform FT and its inverse FT −1 that will be used here is:

FT [f (x)] = F(k) =
∑

x,y

exp (2πik · x) f (x) (4.6)

FT −1[F(k)] = f (x) = 1

NxNy

∑

kx,ky

exp (−2πik · x) F (k) (4.7)

where x = (x, y) and k = (kx, ky). The inverse Fourier transform can be written as
the complex conjugate of the forward transform of the complex conjugate of F(k).

FT −1[F(k)] = 1

NxNy

{
FT [F ∗(k)]}∗ (4.8)

It is only necessary to program one or the other transform (forward or inverse) and
the other can be obtained with suitable complex conjugation and scaling.

When expressed in (x, y) Cartesian coordinates the Fourier transform is separa-
ble in x and y.

F(kx, ky) =
∑

x

exp(2πikxx)

[
∑

y

exp(2πikyy)f (x, y)

]

(4.9)

A two-dimensional transform (forward or inverse) may be implemented by succes-
sive one-dimensional transforms. First perform a one-dimensional transform along
all of the columns and then along all of the rows (or vice versa) of the sampled
image (row-column decomposition). Therefore it is only necessary to program a
single one-dimensional transform to perform both forward and inverse transforms
on two-dimensional images. It is much easier in practice to arrange the images to
be sampled in a rectangular (x, y) Cartesian grid to exploit the separability of the
Fourier transform. Also note that the spacing in x and y may be different but it is
usually advisable that the x and y spacings be within a factor of two or so of each
other.

4.3 The Fast Fourier Transform or FFT

The one-dimensional discrete Fourier transform is:

F(nΔk) = Fn =
∑

j

f (jΔx) exp[2πi(nΔk)(jΔx)] (4.10)
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k = nΔk; Δk = 1/a; n = 0, 1, 2, · · · , (N − 1)

x = jΔx; Δx = a/N ; j = 0, 1, 2, · · · , (N − 1)

with fj = f (jΔx) this simplifies to:

Fn =
∑

j

fj exp[2πi(nj/N)] (4.11)

The amount of computer time this requires typically scales as the number of floating
point operations such as add, subtract, multiply, and divide. A one-dimensional DFT
of length N requires N sums each with N terms and thus requires a computer time
that is proportional to N2.

The computer time may be greatly reduced by use of the fast Fourier transform
or FFT algorithm (Cooley and Tukey [68], Brigham [48], and Bracewell [46]). The
FFT requires that the length N of the transform be a highly composite number (i.e.,
be factorable into many smaller integer prime factors). Usually factors of two are a
little more efficient although this is not a strict requirement. If the length of the data
array is some power of two, N = 2m (N and m integer), then the data array index j

may be written as:

j = j0 + j12 + j222 + j323 + · · · + jm−12m−1 (4.12)

where each of the j0, j1 · · · takes on values of 0 or 1. Equation 4.11 can then be
written as:

Fn =
∑

j0

∑

j1

∑

j2

· · ·
∑

jm−1

fj0j1j2···jm−1

× exp[2πin(j0 + j12 + j222 + · · · + jm−12m−1)/N ] (4.13)

The sums can be rearranged as:

Fn =
∑

j0

exp[2πinj0/N]
∑

j1

exp[2πinj12/N] · · ·
∑

jm−1

exp[2πinjm−12m−1/N]fj0j1j2···jm−1 (4.14)

At first glance it seems as if this has just gotten a lot more complicated without any
gain. However, a close inspection of the arithmetic reveals that there are m = log2 N

sums each with two terms. Each of the N Fourier components Fn requires m sums
of length 2, so the total computer time becomes proportional to Nm = N log2 N .
This is a huge savings in computer time for large N .

When N is decomposed into factors of 2 the FFT is said to be a radix-2 FFT. The
radix-2 FFT requires frequent multiplication by sine and cosine of 0 and π (equals 0
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and ±1) which can be hand coded to avoid some floating point arithmetic operations.
Curiously, if factors of 4 are also treated as prime factors, sine and cosine of 0, π/2,
3π/2 and π appear (equals 0, ±1 and ±i). These can be hand coded without floating
point arithmetic to produce an FFT that is a little faster than using only factors of 2.
Factors of 8 also give a very small improvement in speed but significantly increase
the code size, so only factors of 2 and 4 are commonly treated. When factors of
four are used the FFT is said to be a radix-4 FFT. When N is decomposed into both
factors of 2 and 4 the FFT is said to be a mixed radix FFT. It would first do all of
the factors of 4 and then at most one factor of 2 to get any length that is a power
of 2. If a two-dimensional (or higher) FFT is needed, an additional improvement
in performance can also be obtained by using a look up table for the sines and
cosines because they only need to be calculated once. Higher radix FFTs generally
trade integer operations for floating point operation. Until recently floating point
operations were almost always much slower than integer operation and higher radix
FFTs run faster. Some new computer architectures close the gap (in speed) between
integer and floating, and it is possible that radix-4 or radix-8 may not be significantly
faster than radix-2 on some specific types of computers if floating point and integer
operations are equally fast. Multidimensional transforms can also be limited by the
memory bandwidth, and may benefit from careful attention to the order in which the
data is accessed. The FFT is still a DFT in some sense (the FFT also satisfies Eq. 4.6
but just does it faster) but the two names will be used to distinguish the simple sum
from the fast form of the sum.

The computer time for a radix-2 two-dimensional transform of length Nx × Ny

for the DFT and the FFT (Eq. 4.6) is approximately proportional to:

CPU time for simple DFT ∝ NyN
2
x + NxN

2
y (4.15)

CPU time for FFT ∝ NxNy log2(NxNy) (4.16)

The constant of proportionally is of order unity in both cases. The advantage of the
FFT over the DFT is very large as N gets bigger. Table 4.1 illustrates the relative
CPU time of the DFT versus the FFT for some typical lengths of the data array. In
two dimensions the ratio of the FFT to the DFT remains the same as in the table if
Nx = Ny = N .

Table 4.1 Comparison of the relative CPU time required for a simple discrete Fourier transform
(DFT) and a fast Fourier transform (FFT) for different lengths N

Number of data points N log2(N) DFT FFT Ratio

32 5 1024 160 6.4

64 6 4096 384 10.7

128 7 16,384 896 18.3

256 8 65,536 2048 32

512 9 262,144 4608 56.9

1024 10 1,048,576 10,240 102.4
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The FFT is the workhorse of image simulation and image processing. It is
worthwhile to optimize the code for efficient execution in the computer because
it gets used over and over again. There are a variety of other tricks that can be
incorporated into an actual program. Brigham [48] gives an excellent discussion of
strategies for implementing an efficient FFT. Working code for the FFT has been
given by Press et al. [406]. A version of a one-dimensional FFT using a mixed
radix-2 and radix-4 approach in C is given at the end of this chapter.

Multidimensional FFTs can be implemented by successively applying a 1D FFT
to each dimension. In a 2D FFT each row is transformed and then each column. This
procedure is easy to adapt to multiple CPU (multithreaded) computer. Each row (or
subset of rows) is independent so can be done simultaneously on a different CPU
(many rows at the same time) and then each column (or subset of columns) on a
different CPU. The openMP syntax for multithreading is relatively easy to use and
has become commonly implemented in several different compilers and computer
(and is mostly platform independent).

There are many freely available FFT subroutines. The currently popular FFTW
package [149] seems to be one of the fastest (if not the fastest) available code. There
are many ways to organize the FFT in small different ways. Different approaches
work faster on different hardware, different compilers, and/or different data sizes.
FFTW has an initialization phase that tests (at run time) several possible schemes for
the FFT and discovers the fastest approach on the hardware, compiler, and data size
being used. Subsequent FFTs are typically much faster. This initialization phase
takes significant time and so is not effective if only a few FFTs are performed.
However, if many more of the save size are executed (as is typical in many
simulations, such as discussed here), then there can be an overall speed improvement
of a factor of two or three, which is very helpful. In the current computer
hardware large memory access is slower than many floating point calculation, so
the organization of data in memory may be as important as the actual calculation.
FFTW includes its own memory allocation routines which can be important in large
multidimensional FFTs.

4.4 Wrap Around Error and Rearrangement

A consequence of a discrete Fourier transform (DFT or FFT) is that the sampled
data is repeated indefinitely in a periodic array. An identical copy of the image
appears on all four sides of the image. The image is usually not drawn this way
but is implied by the use of discrete sampling and the discrete Fourier transform.
In practice this periodic repetition means that the left and right edges of the image
are effectively adjacent to one another and can interfere. (x = 0 is equivalent to
x = a, x = 2a, etc.) The same is true of the top and bottom of the image. This
effect is called the wrap-around error because the left and right or top and bottom
edges effectively wrap around and touch each other. If the underlying specimen does
not share this periodicity, then some rather dramatic artifacts that have nothing to do
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with the specimen can be produced in simulated images. The underlying specimen
periodicity should match the periodicity of the supercell (the supercell dimensions
should be an integer multiple of the specimen unit cell size if the specimen is
crystalline) or there should be a buffer zone around the edge of the image that can
be discarded later. The width of this buffer zone varies with the application and may
not always be obvious.

The wrap around effect applies in both real space and reciprocal space. This
causes a strange distribution of spatial frequencies in the FFT. Large positive
frequencies are the same as small negative frequencies. The sampled frequencies
in reciprocal space (Eq. 4.4) may be written in order from left to right (in x) and
bottom to top (in y) as:

kx = 0,Δkx, 2Δkx, 3Δkx, · · · , (Nx − 1)Δkx (4.17)

ky = 0,Δky, 2Δky, 3Δky, · · · , (Ny − 1)Δky (4.18)

With wrap around the kx = (Nx −1)Δkx position is touching the kx = 0 position on
the left. This means that the Nx −1 position is the same as the −1 position (likewise
in the y direction). The calculated order then becomes;

kx/Δkx = 0, 1, 2, . . . ,
Nx

2
,−Nx

2
+ 1, . . . ,−2,−1 (4.19)

ky/Δky = 0, 1, 2, . . . ,
Ny

2
,−Ny

2
+ 1, . . . ,−2,−1 (4.20)

A circle with constant magnitude of spatial is drawn in FFT space on the left side
of Fig. 4.6 (labeled default). The origin is in the lower left corner. What is normally
the first quadrant is in the lower left corner, the second quadrant is in the lower right,
the third quadrant in the upper right, and the fourth quadrant in the upper left. The
distribution of spatial frequencies is normally used in this order during calculation
because it would waste computer time to rearrange it. However, when displayed the
FFT will be rearranged (as on the right-hand side of Fig. 4.6) to conform to a normal
diffraction pattern with zero spatial frequency in the center.

4.5 Fourier Transforming Real Valued Data

The FFT discussed in Sect. 4.3 assumed a general case in which the data f (x) is
complex valued with a real and imaginary part (as in an electron wave function).
Sometimes the data will be explicitly real valued (as in the potential V (r) of the
specimen). The special case of Fourier transforming real data allows a further
reduction in computer time of about a factor of two. There are two possible methods
to use. One is to transform a single real valued array more efficiently and the other
is to transform more than one real array at a time with a single complex FFT. Both
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Fig. 4.6 Geometry of the FFT (or DFT). A circle of constant spatial frequency is drawn in the
default configuration (left) and the rearranged configuration (right). The origin is at the lower left
in the default configuration and in the center in the configuration at right rearranged for display
purposes

of these methods are discussed in Press et al. [406]. Performing a two-dimensional
FFT on real valued data is easiest using the second of these methods.

Consider two one-dimensional arrays of N real values, fa(x) and fb(x), linearly
combined into a single complex valued array fc(x) as:

fc(x) = fa(x) + ifb(x) (4.21)

fc(x) is now in the form that can be used in a single FFT to produce N complex
valued Fourier coefficients. The trick is to untangle the Fourier transform of fa(x)

from that of fb(x). In real space fa(x) and fb(x) can be retrieved from fc(x) using
Eq. 4.21 as:

fa(x) = [fc(x) + f ∗
c (x)]/2 (4.22)

fb(x) = [fc(x) − f ∗
c (x)]/(2i) (4.23)

In Fourier or reciprocal space:

Fc(k) = FT [fc(x)] =
∫

fc(x) exp(2πikx)dx (4.24)

F ∗
c (−k) = FT [f ∗

c (x)] =
∫

f ∗
c (x) exp(2πikx)dx (4.25)

Therefore the transforms of fa(x) and fb(x) may be extracted from the transform
of fc(x) (using Eq. 4.23) as:

FT [fa(x)] = Fa(k) = [Fc(k) + F ∗
c (−k)]/2 (4.26)

FT [fb(x)] = Fb(k) = [Fc(k) − F ∗
c (−k)]/(2i) (4.27)
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If there are N real values in each of fa(x) and fb(x), then there are N complex
values in fc(x) and Fc(k). It follows that there are N/2 complex valued Fourier
coefficients in each of Fa(k) and Fb(k) because:

Fa(k) = F ∗
a (−k) (4.28)

Fb(k) = F ∗
b (−k) (4.29)

To calculate a two-dimensional Fourier transform of Nx × Ny real valued data
points, first calculate the Fourier transform of all of the Ny columns two at a time,
yielding Ny complex arrays of length Nx/2. Next Fourier transform Nx rows of
Nx/2 complex values. This is referred to as a real to complex FFT and results in a
net speed up of about a factor of two.

4.6 Displaying Diffraction Patterns

The square modulus of the Fourier transform of a function is called its power
spectra. The power spectra of the wave function transmitted through the specimen
is also equivalent to the electron diffraction pattern of the specimen. A diffraction
pattern typically has a very large dynamic range in its intensity. The low spatial
frequency information (low scattering angle) has a large amplitude but the high
spatial frequency information (high scattering angle) has a much lower amplitude.
A normal image display device (computer screen or printed paper) does not have
a sufficient dynamic range to display both sets of information. The high spatial
frequency information (which is frequently the interesting part) is not visible if the
diffraction pattern is normalized to fill the available gray scale in a linear manner.
In practice when a diffraction pattern is recorded the film or other detector may be
saturated near the central beam to produce a nonlinear scale or multiple patterns
may be recorded at different exposures to accommodate this large dynamic range.
Gonzalez and Woods [160] and Pratt [405] suggest that a numerically calculated
power spectra be displayed on a logarithmic scale to compress the dynamic range
so that the entire diffraction pattern is visible. A simple logarithm will not work
because some points of the power spectra (diffraction pattern) may be identically
zero. The computer program must somehow limit the negative extent of the image
scale. One method is to simply clip all the negative values (of the logarithm) to some
minimum value. For example, the minimum gray scale can be set to the average
value in some region of reciprocal space about half way between the minimum and
maximum spatial frequencies. An alternative (similar to that proposed by Gonzalez
and Woods [160] and Pratt [405]) is to transform the intensities as:

D(kx, ky) = log(1 + c|F(kx, ky)|2) (4.30)
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Fig. 4.7 The calculated
diffraction pattern or power
spectra of 110 silicon. (a) is
shown on a linear scale and
(b) is a logarithmic scale as in
Eq. 4.30. White is a larger
positive value

where F(kx, ky) is the Fourier transform of the image, D(kx, ky) is the actual value
displayed, and c is a scaling constant that can be varied to adjust the contrast.
Figure 4.7 shows the power spectra of the electron wave function transmitted
through approximately 100 Å of silicon in the 110 orientation at an electron energy
of 100 keV (simulated using the multislice method discussed in later chapters and a
super cell size of 27×27 Å with 128×128 pixels). The linear gray scale in Fig. 4.7a
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shows only the zero order beam in the center (rearranged as in Sect. 4.4) plus a few
of the low order reflections. When displayed using Eq. 4.30 with c = 0.1 the higher
order diffraction spots become visible in Fig. 4.7b. Most diffraction patterns shown
in this book will use a compressed scale something like this.

4.7 An FFT Subroutine in C

The FFT is one of the most efficient (fast computation) algorithms available and
is one of the primary drivers of the multislice algorithm to be considered in later
chapters. There are many FFT subroutines available for downloading or purchase
alone or as part of standard libraries. Below is the code for a simple one-dimensional
FFT. Multidimensional transforms are typically performed as successive 1D FFTs
in each direction, and can be easily implemented in parallel in a shared memory
multiprocessor computer.

/*------------------------ fft42 --------------------------

fft42( fr[], fi[], n ) radix-4,2 FFT in C

fr[], fi[] = (float) real and imag. array with input data
n = (long) size of array

calculate the complex fast Fourier transform of (fr,fi)
input array fr,fi (real,imaginary) indexed from 0 to (n-1)
on output fr,fi contains the transform

*/

void fft42 ( float *fr, float *fi, long n )
{
#define TWOPI 6.283185307

long i, j, nv2, nm1, k, k0, k1, k2, k3, kinc, kinc2;
float qr, qi, rr, ri, sr, si, tr, ti, ur, ui;
double x1, w0r, w0i, w1r, w1i, w2r, w2i, w3r, w3i;

kinc = n;

while( kinc >= 4 ) { /* start radix-4 section */

kinc2 = kinc;
kinc = kinc / 4;

for( k0=0; k0<n; k0+=kinc2) {
k1 = k0 + kinc;
k2 = k1 + kinc;
k3 = k2 + kinc;

rr = fr[k0] + fr[k2]; ri = fi[k0] + fi[k2];
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sr = fr[k0] - fr[k2]; si = fi[k0] - fi[k2];
tr = fr[k1] + fr[k3]; ti = fi[k1] + fi[k3];
ur = -fi[k1] + fi[k3]; ui = fr[k1] - fr[k3];

fr[k0] = rr + tr; fi[k0] = ri + ti;
fr[k2] = sr + ur; fi[k2] = si + ui;
fr[k1] = rr - tr; fi[k1] = ri - ti;
fr[k3] = sr - ur; fi[k3] = si - ui;

}

x1 = TWOPI/( (double) kinc2 );
w0r = cos( x1 ); w0i = sin( x1 );
w1r = 1.0; w1i = 0.0;

for( i=1; i<kinc; i++) {
x1 = w0r*w1r - w0i*w1i; w1i = w0r*w1i + w0i*w1r;
w1r = x1;
w2r = w1r*w1r - w1i*w1i; w2i = w1r*w1i + w1i*w1r;
w3r = w2r*w1r - w2i*w1i; w3i = w2r*w1i + w2i*w1r;

for( k0=i; k0<n; k0+=kinc2) {
k1 = k0 + kinc;
k2 = k1 + kinc;
k3 = k2 + kinc;

rr = fr[k0] + fr[k2]; ri = fi[k0] + fi[k2];
sr = fr[k0] - fr[k2]; si = fi[k0] - fi[k2];
tr = fr[k1] + fr[k3]; ti = fi[k1] + fi[k3];
ur = -fi[k1] + fi[k3]; ui = fr[k1] - fr[k3];

fr[k0] = rr + tr; fi[k0] = ri + ti;

qr = sr + ur; qi = si + ui;
fr[k2] = (float) (qr*w1r - qi*w1i);
fi[k2] = (float) (qr*w1i + qi*w1r);

qr = rr - tr; qi = ri - ti;
fr[k1] = (float) (qr*w2r - qi*w2i);
fi[k1] = (float) (qr*w2i + qi*w2r);

qr = sr - ur; qi = si - ui;
fr[k3] = (float) (qr*w3r - qi*w3i);
fi[k3] = (float) (qr*w3i + qi*w3r);

}
}

} /* end radix-4 section */

while( kinc >= 2 ) { /* start radix-2 section */

kinc2 = kinc;
kinc = kinc /2 ;

x1 = TWOPI/( (double) kinc2 );
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w0r = cos( x1 ); w0i = sin( x1 );
w1r = 1.0; w1i = 0.0;

for( k0=0; k0<n; k0+=kinc2 ){
k1 = k0 + kinc;
tr = fr[k0] - fr[k1]; ti = fi[k0] - fi[k1];
fr[k0] = fr[k0] + fr[k1];
fi[k0] = fi[k0] + fi[k1];
fr[k1] = tr; fi[k1] = ti;

}

for( i=1; i<kinc; i++) {
x1 = w0r*w1r - w0i*w1i; w1i = w0r*w1i + w0i*w1r;
w1r = x1;
for( k0=i; k0<n; k0+=kinc2 ){

k1 = k0 + kinc;
tr = fr[k0] - fr[k1]; ti = fi[k0] - fi[k1];
fr[k0] = fr[k0] + fr[k1];
fi[k0] = fi[k0] + fi[k1];
fr[k1] = (float) (tr*w1r - ti*w1i);
fi[k1] = (float) (tr*w1i + ti*w1r);

}
}

} /* end radix-2 section */

nv2 = n / 2;
nm1 = n - 1;
j = 0;

for (i=0; i< nm1; i++) { /* reorder in bit rev. order */
if( i < j ){

tr = fr[j]; ti = fi[j];
fr[j] = fr[i]; fi[j] = fi[i];
fr[i] = tr; fi[i] = ti; }

k = nv2;
while ( k <= j ) { j -= k; k = k>>1; }
/* while ( k <= j ) {j=j-k; k= k /2; } is slower */
j += k;

}

#undef TWOPI
} /* end fft42() */

4.8 Further Reading

Some Books on Computer Image Processing

1. K. R. Castleman, Digital Image Processing, Prentice Hall, 1979 [58]
2. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3nd edition,

Prentice-Hall, 2008 [160]
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3. B. K. Gunturk and X. Li, Image Restoration, Fundamentals and Advances, CRC
Press, 2013 [175]

4. E. L. Hall, Computer Image Processing and Recognition, Academic Press, 1979
[186]

5. B. Jähne, Digital Image Processing, 3rd edition, Springer, 1995 [240]
6. A. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989 [241]
7. D. L. Missel, Image Analysis, Enhancement and Interpretation, North Holland,

1978 [349]
8. W. K. Pratt, Digital Image Processing, Wiley, 1978 [405]
9. W. O. Saxton, Computer Techniques for Image Processing in Electron

Microscopy, Adv. in Electronics and Electron Physics, Supplement 10, Academic
Press, 1978 [436]

Some Books on Fourier Transforms and Fourier Optics

1. E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, 1988 [48]
2. J. W. Goodman, Intro. to Fourier Optics, 3rd. edit., Roberts and Co., 2005 [161]
3. James S. Walker, Fast Fourier Transforms, 2nd edit., CRC Press, 1996 [516]



Chapter 5
Calculation of Images of Thin Specimens

This chapter discusses the calculation of an electron microscope image neglecting
the geometrical thickness of the specimen (i.e., very thin specimens). Many practical
specimens are too thick for this type of calculation to be quantitatively correct.
However this approach can provide a qualitative insight into the structure in the
image and it requires much less computer time. This type of image simulation is
sometimes referred to as a phase grating, thick phase grating , or a kinematical
image approximation because it does not properly include the effects of multiple or
plural scattering within the specimen. Calculation of the transmission function of
thin specimens is also a necessary part of more advanced calculations including a
realistic specimen thickness that will be considered in later chapters. In particular
the calculation presented in this chapter will form a single slice of the multislice
algorithm

The kinetic energy of the imaging electrons in the electron microscope
approaches their rest mass energy. A detailed quantum mechanical calculation
of the motion of these electrons should properly be calculated using relativistic
quantum mechanics (the Dirac equation with spin). As discussed in Sect. 2.3 the
relativistic effects can be approximated by using the nonrelativistic Schrödinger
equation (neglecting electron spin) with the relativistically correct wavelength and
mass of the electron. This approximation is probably accurate enough at 100 keV
but may be less accurate at 1 MeV. Nonrelativistic quantum mechanics is, however,
dramatically easier to work with, and this approximation will be used here.

5.1 The Weak Phase Object

The primary interaction between the specimen and the imaging electrons is between
the electrostatic potential of the specimen and the charge on the electron. The elec-
trons traveling down the column of the microscope (before hitting the specimen)
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are a superposition of one or more plane waves. In the CTEM the incident electrons
are primarily in a single plane wave and the STEM probe is a superposition of many
plane waves (i.e., a spherically convergent probe). It suffices to consider the effect of
the specimen on one plane wave. The wave function ψ for one plane wave traveling
along the optic axis in the z direction is:

ψ(x) = exp(2πikzz) = exp(2πiz/λ) (5.1)

where λ is the wavelength of the electron and kz = 1/λ is the propagation wave
vector. The relativistic expression for the reciprocal of the electron wavelength in
vacuum (see Eq. 2.5) is:

kz = 1

λ
=
√

eV (2m0c2 + eV )

hc
(5.2)

where m0 is the rest mass of the electron, c is the speed of light in vacuum, h is
Planck’s constant, and eV is the kinetic energy of the electron in vacuum.

The imaging electrons typically have a much higher energy than the electrons
in the specimen. If the specimen is thin the imaging electrons pass through
the specimen with only a small deviation in their path. This deviation can be
approximated as a small change in wavelength of the electrons as they pass through
the specimen (see Fig. 5.1). The specimen has a small electrostatic potential which
influences the electron wavelength. If the potential inside the specimen is positive,
then the imaging electrons are accelerated inside the specimen giving them a smaller
wavelength. If eVs is the additional electrostatic potential energy of the imaging
electrons while in the specimen and λs is their wavelength, then while inside the
specimen:

Fig. 5.1 An incident (high energy) electron plane wave passing through the electrostatic potential
Vs of the specimen. The wave function is drawn as lines of constant phase, and the specimen is
assumed to have a uniform constant potential (not usually true in practice). The electron wavelength
is reduced by the positive potential inside the specimen. This drawing is not to scale
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1

λs

= [(eV + eVs)(2m0c
2 + eV + eVs)]1/2

hc

= [eV (2m0c
2 + eV ) + eVs(2m0c

2 + 2eV + eVs)]1/2

hc

= 1

λ

[
1 + eVs(2m0c

2 + 2eV + eVs)

eV (2m0c2 + eV )

]1/2

(5.3)

Expanding this equation and keeping only the lowest order terms in Vs/V yields:

1

λs

∼ 1

λ

[
1 + eVs(2m0c

2 + 2eV )

2eV (2m0c2 + eV )
+ · · ·

]

∼ kz + Vs(m0c
2 + eV )

λV (2m0c2 + eV )
+ · · · (5.4)

Changing the wavelength inside the specimen is equivalent to shifting the phase of
the electron as it passes through the specimen (i.e., changing the wave vector kz).
Therefore the electron wave function while passing through the specimen is:

ψ(x) ∼ exp(2πikzz) exp(iσeVsz) (5.5)

where the interaction parameter σe is:

σe = 2π

λV

(
m0c

2 + eV

2m0c2 + eV

)
= 2πmeλ

h2
(5.6)

m = γm0 is the relativistic mass. This expression assumes that the specimen
potential Vs is much smaller than the beam energy (Vs/V � 1). Also remember
that the specimen potential varies with position although not explicitly written
above. It is traditional to use the same symbol for both the interaction parameter
and the scattering cross section, but the meaning should usually be clear from
the context in which each is used. The interaction parameter is plotted versus the
electron kinetic energy in Fig. 5.2. The interaction parameter decreases rapidly with
increasing electron energy at low electron energy but is nearly constant for electron
energies above about 300 keV.

If the specimen is very thin, then the electron wave function accumulates a total
phase change while passing through the specimen that is just the integral of the
potential of the specimen. The incident electrons pass through the specimen and
the effect of the specimen is to multiply the incident wave function (Eq. 5.1) by
the specimen transmission function t (x). The wave function transmitted through the
specimen is:

ψt(x) = t (x) exp(2πikzz)

t (x) = exp [iσevz(x)] (5.7)



102 5 Calculation of Images of Thin Specimens

Fig. 5.2 The interaction parameter σe versus the electron kinetic energy

and the projected atomic potential vz(x) is the integral along the optic axis, z of the
specimen:

vz(x) = vz(x, y) =
∫

Vs(x, y, z)dz (5.8)

This is the so-called weak phase object approximation (Cowley and Iijima [77]).
There are really two assumptions in this approximation. One is that the potential
inside the specimen is very small and the other is that the accumulated effect of the
specimen can be replaced with a simple integral along z.

5.2 Single Atom Properties

Single atoms are a reasonable starting point to discuss the simulation of electron
microscope images in the weak phase object approximation. Single isolated atoms
with low to medium atomic number satisfy the thin specimen requirement and can
actually be seen in some microscopes under the appropriate conditions. Furthermore
the potential and charge distribution of single atoms can be calculated from first
principles using relativistic Hartree–Fock theory in a reasonably well defined
although tedious manner. To find the potential and charge distribution in a single
atom requires finding the wave function of all electrons in the atom (to a good
approximation the atomic nucleus may be regarded as a fixed point charge at the
origin). Hydrogen is the only atom which can be solved analytically and a derivation
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is usually given in most quantum mechanics text books (see for example Eisberg
[112] or Schiff [444]). Unfortunately atoms with more than one electron (that is, the
rest of the periodic chart) must be solved numerically with some approximations.
The Hartree–Fock method forms an effective many-electron wave function obeying
the Pauli exclusion principle that also satisfies the Schrödinger wave equation (or in
the case of the relativistic Hartree–Fock method the Dirac wave equation). The
method reduces to repeatedly solving a single particle wave equation for each
electron orbital that is moving in an effective potential due to the charge on the
nucleus and the average interactions with all other electrons in the atoms. Each
electron orbital is calculated using the current distribution of the other electrons in
the atoms and the process is repeated for all orbitals until the electron wave functions
for all electrons converge to a final self-consistent result. Relativistic effects are
probably negligible for low atomic numbers (like carbon) but are significant for high
atomic numbers (like gold) because the core electrons near the nucleus experience
a very large electric field and have a large kinetic energy (i.e., velocity). A detailed
discussion of the Hartree–Fock method is beyond the scope of this book but may be
found in the books by Froese-Fischer [151], Cowan [72], Szasz [481], and Froese-
Fischer et al. [137]. Appendix C gives a detailed description of using a relativistic
Hartree–Fock program to calculate a complete set of atomic potentials for the whole
periodic chart (atomic number Z = 1 through Z = 103).

5.2.1 Radial Charge Distribution

The radial electron charge distribution ρ(r) of each atom is generated as part of the
Hartree–Fock atomic structure calculation. The calculated radial charge distribution
for a few selected atoms is shown in Fig. 5.3. The peaks in the charge distribution
correspond to the atomic orbitals (or electron shells) of each atom. It is interesting
to note that although the total number of electrons increases with atomic number
Z the actual size of the atoms does not change dramatically with atomic number.
The increasing charge of the nucleus (with increasing Z) causes the electrons to
be attracted more strongly to the nucleus roughly keeping the actual atomic size
relatively constant at about one Angstrom in diameter.

5.2.2 Potential

The atomic potential is a more interesting quantity for electron microscopy because
the imaging electrons in the microscope interact directly with the atomic potential
(see Eq. 5.5). The charge distribution and potential are related via Poisson’s equation
from electromagnetic theory. The Mott–Bethe [32, 34, 363, 364] formula (Eq. C.7) is
equivalent to Poisson’s equation; however, it is stated in reciprocal space. Figure 5.3
only includes the electron charge distribution; however, the large point charge
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Fig. 5.3 The calculated electron charge distribution 4πr2ρ(r) (in electrons per Å) for isolated
single atoms at the origin versus the three-dimensional radius r . The atoms are carbon (Z = 6),
silicon (Z = 14), copper (Z = 29), gold (Z = 79), and uranium (Z = 92)

on the atomic nucleus probably has the strongest interaction with the imaging
electrons. The electron cloud in Fig. 5.3 mainly serves to shield the atomic nucleus
(remember that the nucleus has a positive charge but the electron cloud has a
negative charge). When the charge on the atomic nucleus is added to the atomic
electron charge distribution and the resulting charge distribution is transformed into
an atomic potential the total potential is much more strongly peaked near the nucleus
(at the origin). The Hartree–Fock procedure of necessity ends up with a large table
of numbers. Appendix C details how to parameterize the tabulated Hartree–Fock
results. To a reasonably good approximation the atomic potential (including the
nucleus) may be written as:

Va(x, y, z) = 2π2a0e

3∑

i=1

ai

r
exp(−2πr

√
bi)

+ 2π5/2a0e

3∑

i=1

cid
−3/2
i exp(−π2r2/di) (5.9)

with r2 = x2 + y2 + z2

where a0 is the Bohr radius and the ai, bi, ci , and di coefficients are tabulated in
Appendix C. There is a different set of coefficients for each element. A graph of
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Fig. 5.4 Calculated atomic potential versus the three-dimensional radius r for isolated single
atoms at r = 0. The atoms are carbon (Z = 6), silicon (Z = 14), copper (Z = 29), gold (Z = 79),
and uranium (Z = 92)

the atomic potential versus radius in three dimensions is shown in Fig. 5.4 for a few
selected elements.

When the atomic potential is integrated along the z direction (i.e., the optic axis
of the microscope) the result is the projected atomic potential:

vz(x, y) =
∫ +∞

−∞
Va(x, y, z)dz

= 4π2a0e

3∑

i=1

aiK0(2πr
√

bi)+2π2a0e

3∑

i=1

ci

di

exp(−π2r2/di) (5.10)

with r2 = x2 + y2

where K0(x) is the modified Bessel function of zeroth order. The projected atomic
potential is shown in Fig. 5.5 for the same elements as in Fig. 5.4.

The atomic nucleus is essentially a point charge on this scale (typical nuclear
sizes are of order a few times 10−5 Å). This causes a singularity in the projected
atomic potential at r = 0 (there is also a singularity in the 3D atomic potential.)
In reality the finite size of the nucleus removes the singularity so there is no real
problem. No electron microscope that currently exists has enough resolution to
see this strong singularity either, so the limited resolution of the microscope will
further smear out this singularity in practice. In practical computer simulations the
singularity will also be removed by finite sampling requirements because only the
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Fig. 5.5 Calculated projected atomic potential versus the two-dimensional radius r for isolated
single atoms at r = 0. The atoms are carbon (Z = 6), silicon (Z = 14), copper (Z = 29), gold
(Z = 79), and uranium (Z = 92)

projected atomic potential averaged over a nonzero sized sampling element or pixel
is used. The projected atomic potential (Fig. 5.5) diverges less strongly than the
atomic potential (Fig. 5.4).

At a radius of 0.1 Å the projected atomic potential of silicon (Si) is 0.41 kV-Å
and the projected atomic potential of gold (Au) is 1.45 kV-Å (see Fig. 5.5). The
interaction parameter σe (Eq. 5.6) is 0.92 radians/(kV-Å) at a beam energy of
100 keV. This means that a single silicon atom will produce a total phase shift of
0.38 radians and a single gold atom will produce a phase shift of 1.34 radians (both
at a beam energy of 100 keV and a radius of 0.1 Å). A single gold atom is not a
weak phase object (in the sense of Eq. 3.6) but a single silicon atom is a reasonable
weak phase object (at 100 keV). The situation improves slightly at beam energies of
300 keV or above because σe decreases by almost a factor of two. All atoms have a
near singularity at a radius of zero so no single atom is truly a weak phase object in
a strict sense.

5.2.3 Atomic Size

There is no single unambiguous method to calculate the effective size of single
atoms. The rms (root-mean-square) radius is as good as any other method. The three-
dimensional mean square (rms) radius of the charge distribution can be defined as:
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rq =
[∫∞

0 r2ρ(r)r2dr
∫∞

0 ρ(r)r2dr

]1/2

where r = x2 + y2 + z2 (5.11)

where ρ(r) is the radial charge density. In a similar manner the two dimensional
mean square radius of the projected atomic potential is:

rv =
[∫∞

0 r2vz(r)rdr
∫∞

0 vz(r)rdr

]1/2

where r = x2 + y2 (5.12)

Portions of the potential at large radius contribute more to this calculation due
to their increased effective area. For example, if the projected atomic potential is
multiplied by r the result is shown in Fig. 5.6. The rms atomic radii for all atoms
as calculated from Eqs. 5.11 and 5.12 is shown in Fig. 5.7. The large tails of the
potential increase the apparent size of the atoms. The effective rms size of the
atoms as determined by the projected atomic potential is about two Angstroms
in diameter (similar to the spacing between atoms). Note that the effective full-
width-half-maximum of a single atom image may be smaller because of the strong
potential near the nucleus of each atom.

Fig. 5.6 Projected atomic potential multiplied by the radius r to illustrate the relative contribution
to an image. Each curve is a different atom; carbon (Z = 6), silicon (Z = 14), copper (Z = 29),
gold (Z = 79), and uranium (Z = 92)
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Fig. 5.7 The rms radius of isolated single atoms as determined from the (3D) electron charge and
the (2D) projected atomic potential

5.2.4 Scattering Factors

The traditional physics view of electron scattering starts with a plane wave incident
on the atom which gives rise to an outgoing plane wave plus an outgoing spherical
wave (the atom has spherical symmetry) with amplitude fe(q).

ψ(x) = exp(2πikzz) incident (5.13)

= exp(2πikzz) + fe(q)
exp(2πiq · r)

r
scattered (5.14)

where q is the difference between the incident and scattered wave vectors (three-
dimensional vector). The scattering amplitude fe(q) can also be referred to as the
scattering factor. There are several methods of calculating the scattering amplitudes.
The most popular approximation to the scattering amplitude is the first Born
approximation that is simply the three-dimensional Fourier transform of the atomic
potential (see for example section 38 of Schiff [444]):

fe(q) = 2πm0e

h2

∫
Va(r) exp(2πiq · r)d3r

= 1

2πea0

∫
Va(r) exp(2πiq · r)d3r (5.15)
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where Va(r) is the 3D atomic potential of the atom, m0 is the rest mass of the
electron, e is the magnitude of the charge of the electron, h is Planck’s constant,
and a0 = h̄2/m0e

2 = 0.5292 Å is the Bohr radius. fe(q) is in units of Å and
must be multiplied by the relativistic mass ratio m/m0 for different incident electron
energies. For the case where the atom is spherically symmetric this reduces to:

fe(q) = 1

πea0q

∫ ∞

0
Va(r) sin(2πqr)rdr (5.16)

The scattering factor is the amplitude for scattering of a single electron by a single
atom. The first Born approximation is totally inadequate for directly calculating
electron scattering in the electron microscope image (Zeitler and Olsen [543, 544],
Glauber and Shoemaker [157]). In general fe(q) should be a complex valued
quantity but the first Born approximation only yields a real valued quantity. However
the first Born approximation is convenient because it is also the Fourier transform
of the atomic potential. Image simulation will eventually use the specimen potential
directly and not the scattering factors, so the Born approximation is still useful as a
means of calculating the specimen potential. Combined with the Fourier projection
theorem (Appendix B) the Born approximation provides a convenient method of
calculating the projected atomic potential of thin specimens. It is also independent
of the incident electron energy so that is easy to tabulate. As given in Appendix C
the scattering amplitude in the first Born approximation can be written as:

fe(q) =
3∑

i=1

ai

q2 + bi

+
3∑

i=1

ci exp(−diq
2) (5.17)

where the ai, bi, ci and di coefficients are tabulated in Appendix C for each element
and are found by fitting the results of the relativistic Hartree–Fock program. The
scattering factors for several atoms are plotted in Fig. 5.8. Note that the scattering
factor for carbon (Z = 6) and silicon (Z = 14) cross at low angle. The low angle
scattering factor is dependent on the state of the outer valence shell which fills
periodically with increasing atomic number in the periodic chart. The scattering
factor at large angles is primarily due to the scattering from the nucleus which is
a monotonic function of atomic number Z. Doyle and Turner [100] have given the
most popular tabulation currently in use. Many other authors have tabulated relevant
parameters for single atoms and Table C.1 of Appendix C gives a more complete
listing of the data available in the literature.

A more detailed derivation of the scattering factor in the Moliere [358] or eikonal
[444] approximation yields an improved expression of:

fe(q) = 2πi

λ

∫ ∞

0
J0(2πqr)

{
1 − exp

[
iσe

∫
V (x, y, z)dz

]}
rdr (5.18)
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Fig. 5.8 The electron scattering factor in the first Born approximation versus scattering angle
k = α/λ of isolated single atoms. Each curve is a different atom which are carbon (Z = 6), silicon
(Z = 14), copper (Z = 29), gold (Z = 79) uranium (Z = 92)

where r = √
x2 + y2 can also be interpreted as the impact parameter, J0(x) is

the Bessel function of order zero which arises from the azimuthal integration of a
spherically symmetric function and σe is the interaction parameter (Eq. 5.6). This
expression for the electron scattering factor (Eq. 5.18) is a complex quantity (Zeitler
and Olsen [543, 544], Frank [141], Reimer and Gilde [416], Ferwerda and Visser
[131]) and can be recognized as the Fourier transform of the weak phase object
approximation (Eq. 5.5). The scattering processes discussed here are purely elastic
so electrons should not be created or destroyed. The optical theorem (for example,
Schiff [444]) requires that the scattering factor fe(q) be complex to preserve the
total number of electrons. A complex valued scattering factor does not imply that
the atomic potential is complex. The atomic potential is a real valued function
but a complete elastic scattering factor should be complex to preserve the total
number of particles. The Moliere approximation for fe(q) (Eq. 5.18) is a different
value for each incident electron energy and is therefore difficult to tabulate for a
general incident electron energy. The first Born approximation can be tabulated
independent of energy which probably accounts for its popularity. The scattering
amplitude is plotted in Fig. 5.9 in both the Moliere and Born approximations for
a low (Z = 14, silicon) and high (Z = 79, gold) atomic number atom. The
Born approx. is fairly accurate for low atomic numbers like carbon and silicon but
becomes less accurate at high atomic numbers like gold. At high atomic numbers
the first Born approximation gets the magnitude about right but the phase of the
scattering amplitude may have significant error. The phase of fe(q) increases at high
angles whereas the phase of the first Born approximation is identically zero for all
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Fig. 5.9 The electron scattering factor for (a) silicon and (b) gold at 200 keV. The curves labeled
real and imag. are the complex scattering factor in the Moliere approximation (Eq. 5.18) and
the curves labeled Born are the scattering factor in the first Born approximation scaled by the
relativistic mass ratio m/m0. (c) shows the amplitude and (d) the phase of the complex scattering
factors

angles. The different behavior of heavy and light atoms in the imaginary part of the
scattering factors has been proposed as a means of locating heavy atoms on a carbon
support film using a defocus series reconstruction (for example, Frank [141]).

5.3 Total Specimen Potential

The imaging electrons in the microscope interact with the effective potential of the
specimen as a whole. Simulation of a whole electron microscope image requires
a knowledge of the position of all atoms in the specimen. The main question
is how to combine the single atom potentials to get the potential of the whole
specimen. The simplest approach is to form the potential of the specimen by a linear
superposition of the potentials of each atom in the specimen as if all of the atoms
were independent.
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vz(x) =
N∑

j=1

vzj (x − xj ) (5.19)

where xj = (xj , yj ) is the position of atom j in a plane perpendicular to the
optical axis of the microscope and vzj (x) is its projected atomic potential. In a thick
specimen xj will become a three-dimensional quantity (see Chap. 6). This model
may also be referred to (for example, Meyer et al. [343] and Susi et al. [480])
as an independent atom model (IAM). This linear superposition approximation
would be exact for single atoms separated by a distance that is large compared to
the size of the atom. However, in an actual solid specimen the atoms are bound
together and their outer valence electrons will have been rearranged slightly. This
electronic rearrangement will also alter the projected atomic potential (and low
angle scattering) slightly. The principle interaction causing high angle scattering
is the interaction between the imaging electrons (in the microscope) and the large
point charge at the atomic nucleus. Because the nucleus is unaffected by bonding in
the solid the high angle scattering (as in ADF-STEM) should be well represented by
a simple linear superposition of atomic potentials. The bonding in the solid should
primarily affect the low angle scattering such as in bright field phase contrast (STEM
and CTEM).

Inherent in the discussion of Sect. 5.2 is the assumption that each atom is
spherically symmetric. This is only true for atoms whose valence shells are in
the l = 0 or s angular momentum state. Early work by McWeeny [339, 340]
and Freeman [146, 147] showed that the X-ray scattering from aspherical atoms
(p-state valence shells) may vary by approximately 5–10% with azimuthal angle
in low Z atoms at small scattering angles. Electronic rearrangement in the solid
should produce a similar magnitude of error in the projected atomic potential of the
specimen. The error introduced with the linear superposition of atomic potentials
approximation should be regarded as about 5–10% in the low angle scattering. This
is an acceptable error for many calculations but caution should be taken when trying
to extract precise quantitative information out of a simulation. Meyer et al. [343]
and Susi et al. [480] have compared a detailed electronic structure calculation of
monolayer specimens to the IAM approximation and found similar levels of error.

It is straight forward to write a general purpose computer program to calculate
images of thin specimens with any element in the periodic chart that runs in
a reasonable amount of computer time using the linear superposition (IAM) of
tabulated single atom potentials from Appendix C (or other similar tabulations).
As resolution improves to be comparable to the size of individual atoms the IAM
becomes less accurate and should be replaced with a full electronic structure
calculation including the core electrons. Unfortunately computing the electronic
structure of solids including bonding is still a demanding task. It is not yet easy
to write a general purpose computer program to calculate the electronic structure of
an arbitrary solid, both because the theory is still under development to some extent
and because of the large amount of computer time required. With the rapid advances
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in computational science this situation will likely improve in the near future, but for
now a simple linear superposition (Eq. 5.19) will have to suffice.

Previous tabulations of single atom properties usually were stated in terms of
the electron scattering factors in the first Born approximation (Eq. 5.15). The first
Born approximation is totally inadequate to describe the scattering process but has
a simple relationship to the atomic potential (as well as the X-ray scattering factors,
see Appendix C). The scattering factors in the first Born approximation naturally
lend themselves to a calculation of the projected atomic potential in reciprocal
(or Fourier) space. Once the potential has been calculated then a more correct
scattering factor (Eq. 5.18) or specimen transmission function can be calculated
(Eq. 5.7) from the specimen potential. The (2D) Fourier transform of Eq. 5.19 is:

Vz(k) =
N∑

j=1

Vzj (k) exp(2πik · xj ) (5.20)

substituting the electron scattering factor in the first Born approximation yields:

σeVz(k) = λ
m

m0

1

ab

∑

j

fej (kx, ky, 0) exp(2πik · xj ) (5.21)

where fej (q) is the electron scattering factor in the first Born approximation for
atom j . The total area of the specimen being simulated (with supercell dimensions
a × b) is ab and is required to normalize the Fourier transform properly. This
constant may vary with different implementations of the Fourier transform. Note
that fej (q) is a function of a three-dimensional wave vector q = (kx, ky, kz) but the
inverse transform is with respect to only two dimensions (k = (kx, ky)) with zero for
the third coordinate kz. This results in the projected atomic potential (i.e., integration
along the z axis) because of the Fourier projection theorem (see Appendix B). The
real space atomic potential can be found by inverse Fourier transforming Vz(k)

(in 2D) as:

vz(x) = FT −1[Vz(k)] (5.22)

This vz(x) can be used in Eq. 5.18 or 5.7. The summation on the right-hand side of
Eq. 5.21 is formally called the structure factor of the specimen given by:

F(q) =
∑

j

fej (q) exp(2πiq · xj ) (5.23)

If the specimen is a crystal, then there will be a few discrete points k at which the
Fourier component of the potential Vz(k) is significantly larger than its neighboring
values. These correspond to the Bragg reflections for this particular projection of
the crystal. The Fourier components of the potential are zero at points in between
the Bragg reflections for crystalline specimens. Thermal vibration of the atoms in
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the specimen may cause a small diffuse background in between the Bragg peaks
(thermal diffuse scattering, TDS). If the specimen is amorphous, then there will be
a nearly continuous distribution of values at all points k in reciprocal space. Crystals
containing defects or interfaces should be treated as if they are amorphous and all
Fourier components of the potential should be calculated (i.e., not just the Bragg
reflections).

5.4 BF Phase Contrast Image Calculation

This section will be discussed in the context of BF-CTEM image formation although
it also applies to BF-STEM via the reciprocity theorem. In simple coherent BF-
CTEM image formation the electron wave function incident on the specimen is a
single plane wave of unit intensity. This wave function will pass through a thin
specimen and experience a position dependent phase shift modeled as the specimen
transmission function. Once the projected atomic potential of the specimen has been
calculated (Eqs. 5.19 and 5.21 ) it is relatively straight forward to calculate the actual
electron microscope image. From the projected atomic potential the wave function
transmitted through the specimen is:

ψt(x) = t (x) exp(2πikzz) ∼ t (x) (5.24)

where a common factor of exp(2πikzz) has been ignored (it will drop out because
only the intensity matters in the end and it is unaffected by the transfer function).
The specimen transmission function is:

t (x) = exp [iσevz(x)] (5.25)

where vz(x) is the total projected atomic potential of the specimen (Eqs. 5.8, 5.22)
and σe is the interaction parameter (Eq. 5.6).

Electron microscope image formation is fundamentally cylindrically symmetric.
It is essential that any simulation preserves this symmetry. Figure 5.10 shows a view
of a sampled image in reciprocal space. The real space dimensions are a × b (in x

and y). The general case in which a and b are very different is shown. There are
two things that may alter the basic symmetry of the image and produce odd artifacts
in the image. First, if the real space image size is not the same in x and y, then the
maximum spatial frequency may be different in each direction. The second related
problem is the few Fourier coefficient in the four corners. If the entire area of the
Fourier transform is just filled completely, then various artifacts with rectangular
symmetry can creep into the image. It is usually advisable to bandwidth limit the
image with cylindrical symmetry. Only the spatially frequencies inside the largest
inscribed circle as shown in Fig. 5.10 should be allowed to contribute to the final
image. Although this may limit the resolution a little it at least does it with the
proper symmetry and introduces fewer nonphysical artifacts in the image. This also
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Fig. 5.10 Symmetrical bandwidth limiting the image in reciprocal space. The real space image
has dimensions of a × b (in x and y) and is sampled with Nx × Ny pixels. Only those Fourier
components inside the largest inscribed circle should be allowed to contribute to the image to
avoid artifacts with an incorrect symmetry

means that it is best to make the image size square; otherwise, a large percentage of
the pixels (in reciprocal space) will have to be set to zero and the calculation will
not be very efficient. This bandwidth limit should be applied to both the projected
atomic potential and the transmission function because the calculation in Eq. 5.25
is nonlinear and will generate many higher frequencies even though vz(x) may be
properly bandwidth limited.

The transmitted wave function (Eq. 5.24) is imaged by the objective lens of
the microscope. The effects of the aberrations of the objective lens are easiest
to calculate by Fourier transforming the transmitted wave function and then
multiplying by the transfer function of the objective lens.

Ψt(k) = FT [ψt(x)]
Ψi(k) = Ψt(k)H0(k) (5.26)

where Ψi(k) is the image wave function in the back focal plane of the objective
lens and H0(k) is the transfer function of the objective lens. For simplicity, ignore
aberrations other than defocus and third order spherical aberration.

H0(k) = exp[−iχ(k)]A(k)

χ(k) = πλk2(0.5Csλ
2k2 − Δf ) (5.27)

where Δf is defocus, Cs = CS3 is the coefficient of spherical aberration and A(k)

is the aperture function:

A(k) = 1 ; λk = α < αmax

= 0 ; otherwise (5.28)

αmax is the maximum semiangle allowed by the objective aperture. Other aberrations
may be included but only the simplest few are given here for simplicity. The objec-
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Table 5.1 Steps in the simulation of CTEM images of thin specimens (a phase grating calculation)

Step 1 Calculate the projected atomic potential vz(x) from Eq. 5.19 or 5.21

Step 2 Calculate the transmission function t (x) = exp[iσevz(x)] (Eq. 5.25) and symmetri-
cally bandwidth limit it. The incident wave function is a plane wave so the transmitted
wave function is equal to the transmission function

Step 3 Fourier transform the transmission function T (k) = FT [t (x)]
Step 4 Multiply the Fourier transform of the transmission function by the transfer function of

the objective lens, H0(k) (Eq. 5.27) to get the image wave function in the back focal
plane Ψi(k) = H0(k)T (k)

Step 5 Inverse Fourier transform the image wave function ψt (k) = FT −1[Ψi(k)]
Step 6 Calculate the square modulus of the image wave function (in real space) to get the

final image intensity g(x) = |ψt (x) ⊗ ho(x)|2

tive lens images this wave function to form the final electron microscope image.
The actual magnification of the objective lens may be ignored in the calculation
(but NOT in practice) if the image coordinates are always referred to the actual
specimen dimensions.

The actual recorded image g(x) is the magnitude squared of the image wave
function after inverse Fourier transforming back into real space.

ψi(x) = FT −1[Ψi(k)]
g(x) = |ψi(x)|2 = |ψt(x) ⊗ h0(x)|2 (5.29)

where h0(x) is the complex point spread function of the objective lens (the inverse
Fourier transform of H0(k)). The steps required to calculate the image of a thin
specimen are summarized in algorithmic form in Table 5.1.

5.4.1 Single Atom Images

Figure 5.11 shows the specimen transmission function (Eq. 5.25) for the five single
atoms plotted in Fig. 5.5. The atoms are arranged in a row 10 Å apart. The atomic
potential was calculated in an image size of 50 Å on a side and 512 × 512 pixels
using Eq. 5.21. The slight ringing near each atom is due to the finite bandwidth of
the sampled image. There is also a slight asymmetry in some of the atoms. This
occurs because there will always be some atom positions that are not exactly integer
multiples of the pixel spacing. The atom potential is then spread across neighboring
pixels in a nonsymmetrical manner. This asymmetry should be small and vanish
in the final images. Also note that the real part of the transmission function has a
stronger dependence on atomic number Z than the imaginary part.

The actual height of the peak for each atom is mainly a function of the
sampling size. The actual potential has a singularity at the center of each atom (see
Fig. 5.5). The value at the center of the atom is the average over one pixel. As this
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Fig. 5.11 Line scan of the complex transmission function for five isolated single atoms and an
incident electron beam energy of 200 keV. This was calculated with a sampled image of 512 × 512
pixels. The scan goes through the center of each atom (atomic number Z = 6, 14, 29, 79, 92)

pixel gets smaller this value is closer to the singular value at the center of the atom.
The integrated value should come through to the image properly with different pixel
sizes although some care is required in choosing an appropriate pixel sampling size.

Figure 5.12 shows the image intensity (Eq. 5.29) of the five isolated single atoms
calculated from Fig. 5.11 with Scherzer conditions. The incident electron intensity
is assumed to be unity for this simulation so that the image intensity in between
the atoms (i.e., vacuum) should be one. The rings surrounding each atom are part
of the so-called Airy disk caused by a sharp cut off in reciprocal space due to the
objective aperture. The rings on the right wrap around to interfere with the atom on
the left (the wrap-around effect). Figure 5.13 shows a line scan through the center of
each atom in Fig. 5.12. Eisenhandler and Siegel [113] and Reimer and Gilde [416]
have also plotted single atom image profiles.

In the special case of isolated single atoms the image intensity g(x) in bright field
phase contrast may be written as:

g(x) =
∣∣∣∣1 + 2πi

∫ kmax

0
fe(k) exp[−iχ(k)]J0(2πkr)kdk

∣∣∣∣

2

(5.30)
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Fig. 5.12 The coherent bright field phase contrast image of five isolated single atoms and an
incident electron beam energy of 200 keV. The electron optical parameters are spherical aberration
Cs = 1.3 mm, defocus Δf = 700 Å and an objective aperture of 10.37 mrad (Scherzer conditions).
This was calculated with a sampled image of 512 × 512 pixels. Atomic number Z = 6(C), 14(Si),
29(Cu), 79(Au), 92(U) (left to right). The image ranges from 0.72 (black) to 1.03 (white)

Fig. 5.13 Line scan through the center of the atoms in the coherent bright field phase contrast
image in Fig. 5.12
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Fig. 5.14 Single atom peak signal in coherent bright field phase contrast versus atomic number
Z for incident electron energies of 60, 100, 200, and 400 keV. Spherical aberration was fixed at
Cs = 1.3 mm. Scherzer conditions were used for defocus and objective aperture

where fe(k) is the electron scattering factor in the Moliere approximation (found
by numerical integration of Eq. 5.18 using the projected atomic potential from
appendix C), χ(k) is the aberration function, kmax = αmax/λ is the maximum spatial
frequency in the objective aperture, and J0(x) is the Bessel function of order zero.
The first Born approximation for the scattering factor should not be used in this
expression. A graph of the peak single atom signal 1 − g(0) in coherent bright field
phase contrast found by numerical integration of Eq. 5.30 is shown in Fig. 5.14.
The BF signal varies weakly with atomic number. The overall trend approximately
follows Z0.5 to Z0.7; however, there is a significant variation reflecting the filling
of different valence shells as in the periodic chart. Different atomic numbers can
have the same signal and heavier atoms can have a smaller signal than lighter atoms
(the signal is not monotonic in atomic number Z). It is possible to distinguish heavy
atoms and light atoms but it would not be possible to precisely identify any specific
atom by its bright field phase contrast signal alone.

5.4.2 Thin Specimen Images

Silicon is a reasonable starting point to begin discussing image simulation. It is a low
enough atomic number that it is reasonable to approximate it as a weak phase object
and it has a relatively simple structure. A precise simulation should still include
thickness effects as covered in later chapters but for now the geometrical effects of
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Fig. 5.15 Common projections of the silicon lattice (diamond structure with cubic cell size a =
5.43 Å). The circles represent the projected position of the silicon atoms. The indicated crystal
direction (100, 110, or 111) is along the optic axis of the microscope and perpendicular to the
plane of the paper

specimen thickness will be ignored. Thickness can be included in some sense by
superimposing the atoms along the optic axis in the specimen but the position of
each atom along the beam direction will be ignored until later.

Silicon is a technologically important material and is the basic building block
of most electronic devices. Its common crystalline form is the diamond structure
(two interpenetrating face centered cubic or fcc lattices). When viewed in the elec-
tron microscope the three-dimensional lattice is projected into a two dimensional
image. The three common projections of the diamond lattice with a cubic cell
dimension of a are shown in Fig. 5.15. The (100) projection has a repeat length
of a along the beam direction with one atom per repeat length. The (110) projection
repeats every a

√
2 with two atoms per repeat length and two different types of

atomic layers. The (111) projection repeats every a
√

3 with two atoms per site and
three different layers.

To calculate an image of silicon in the weak phase object approximation requires
sampling the atomic potential of silicon in a rectangular grid with the atoms placed
at their respective positions in the grid. The discrete Fourier transform (DFT or
FFT) requires that the sampled image obey periodic boundary conditions so the
boundaries of the sampled image should match the natural periodicity of the actual
specimen. This means that the sampling grid size should be an integer number of
unit cells shown in Fig. 5.15 or equivalent. The full scale dimensions of the sampling
grid will be labeled a, b in the horizontal and vertical directions, respectively. This
nomenclature is drawn from crystallography and should not be confused with the
real physical dimensions of the crystal (which are also frequently labeled a, b, c).
The meaning will usually be clear from the context in which they are used. As an
example an image of the (110) projection of silicon will be calculated. The full
scale dimensions of the (110) unit cell in Fig. 5.15 will be called a0 = aSi/

√
2 in

the horizontal direction and b0 = aSi in the vertical direction. aSi is the real physical
cubic cell size of silicon.
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It is tempting to make the real space sampling grid the same size as the two
dimensional unit cell in Fig. 5.15 but this is not a good idea. A typical electron
microscope has a resolution of no better than about 1.5–2 Å. A good rule of thumb is
to keep the real space sampling resolution (Δx,Δy) to be no bigger than about 1/3–
1/4 of the final resolution. This way atoms still look round and not rectangular. With
a0 = 3.84 Å and b0 = 5.43 Å this would mean that Nx = a0/Δx ∼ 7.7 pixels and
Ny = b0/Δy ∼ 10.9 pixels. Rounding up to the nearest power of two would give
an image of 8 by 16 pixels. Although the real space sampling size is adequate the
reciprocal space sampling is very wrong in this simple argument. There are actually
two sampling requirements that must be met. Both real space and reciprocal space
are important. With a single unit cell of size a0 × b0 the resolution in reciprocal
space is Δkx = 1/a0 = 0.26 Å−1 and Δky = 1/b0 = 0.18 Å−1. At 200 keV the
electron wavelength is 0.02508 Å. Using α = λk means that this choice has an
angular resolution of about 6.5 and 4.6 mrad. In reciprocal space a typical objective
aperture semiangle α is about 10 mrad. There would only be two or three pixels
inside the objective aperture in the final image. This would be totally inadequate to
sample the transfer function or the specimen. In practice it is a good idea to have at
least 5–10 pixels in the radius of the objective aperture (much more is better).

The solution to this problem is slightly nonintuitive. The size of the sampled
image should really be several times the size of the minimum unit cell of the
crystal specimen. As long as a and b are integer multiples of a0 and b0 the
periodic boundary conditions are satisfied, and the reciprocal space resolution can
be improved (i.e., Δkx and Δky made smaller). To get a reciprocal space sampling of
about 1 mrad at 200 keV requires a supercell size of 7×5 unit cells (26.89×27.15 Å).

For this particular problem (a perfect crystal) expanding the number of unit cell
in real space simply moves the Bragg peaks further apart in Fourier space with zero
in between. The transfer function is not strictly needed at these in between zeros so
there is no real improvement for this particular problem. However, in later examples
with imperfect crystals and STEM probes this sampling will be important so this
example will continue as if it were a more general problem, although there is some
argument that this is not the most efficient approach (this is a quick calculation so
CPU time is not much of a concern) for this particular problem.

The normalized coordinates for one projected unit cell of (110) silicon is shown
in Table 5.2. The projected atomic potential for a four atom thick specimen of (110)
silicon is shown in Fig. 5.16a with a super cell size of 7 × 5 silicon unit cells. Note
the characteristic “dumbbell” shape of pairs of silicon atoms. Figure 5.16b, c is the

Table 5.2 The normalized
coordinates for one projected
unit cell of the silicon
(Z = 14) lattice in the (110)
projection

Atom Occupancy x/a y/b

1 1 0 0

2 1 0.5 0.75

3 1 0 0.25

4 1 0.5 0.5

The two-dimensional unit cell dimensions are
a × b where a = aSi/

√
2 = 3.8396 Å and

b = aSi = 5.43 Å
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Fig. 5.16 Steps in simulating an image of 110 silicon in the weak phase object approximation.
(a) Projected atomic potential (4 atoms thick, 256 × 256 pixels). (b, c) Real and imaginary part
of the specimen transmission function at 200 keV. The scale bar in (a) is 10 Å. The image ranges
are (b) 0.90–1.00, (c) 0.00–0.43. White is a larger positive number and atoms should appear white
in (a)

complex transmission function at a beam energy of 200 keV for this specimen and
Fig. 5.17a, b are the bright field images that would result at electron beam energies
of 200 keV and 400 keV, respectively. The lattice is not easily visible at an energy
of 100 keV under Scherzer conditions at this value of Cs . Deviations from Scherzer
conditions can, however, produce some interesting effects (see for example Izui
[237], Hutchison and Waddington [221]). When the image is calculated at 100 keV
the result has a structure that resembles a crystal lattice but has a range that is
of order (10−5–10−6) of its average value. This is just the roundoff error of the
numerical calculation and has no physical significance. This can happen often in
simulation and you have to be careful to look at the actual numerical range of the
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Fig. 5.17 Coherent bright field (BF) image of 110 silicon in the weak phase object approximation
(256 × 256 pixels). (a) BF image at 200 keV, Δf = 700 Å, αmax = 10.37 mrad. (b) BF image
at 400 keV, Δf = 566 Å, αmax = 9.33 mrad. Both (a) and (b) have a spherical aberration of
Cs = 1.3 mm and Scherzer conditions. (c) BF image at 200 keV for an ideal aberration corrector
with fixed CS5 = 30 mm similar to Fig. 3.8 (CS3 = −38.7µm, Δf = −97.6 Å). The scale bar in
(a) is 10 Å. The image ranges are (a) 0.91–1.09, (b) 0.87–1.07, and (c) 0.95–1.26. White is a larger
positive number and atoms should appear black in (a, b) and white in (c)

image as well as its structure. The computer will just scale whatever numerical range
is there to fill the available gray scale and produce an image. Although the dumbbell
shape is not resolved at either energy the higher voltage does start to get an elongated
shape for the atom pairs. Spence et al. [473] and Desseaux et al. [96] have given a
similar discussion of 110 germanium.

Figure 5.17c shows the image for an ideal aberration corrector using the
aberrations similar to Fig. 3.8 with a large fixed CS5 balanced by a small negative
CS3 and positive C10 (or negative Δf ) to produce a positive transfer functions over
a large range of spatial frequencies (which changes the single atom signal from
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Fig. 5.18 The transfer function for a coherent bright field (BF) image in the weak phase
approximation under Scherzer conditions. Spherical aberration is Cs = 1.3 mm and the electron
energy varies from 100 to 400 keV. Two spacings relevant to the 110 projection of silicon are
shown for comparison. 1.36 Å is the spacing between the dumbbells and 3.13 Å is the spacing for
the lowest order allowed reflection

black to white). 200 kV was used here because 300 kV (in Fig. 3.8) will likely
cause too much radiation damage in silicon. Other parasitic aberrations are assumed
identically zero.

The apparent resolution of the simulated images in Fig. 5.17 is consistent with
the linear image transfer function as shown in Fig. 5.18. The lowest order allowed
reflection in the 110 projected unit cell (Fig. 5.15) are the 111 type beams with a
spacing of aSi/

√
3 = 3.13Å, and the distance between the two atoms in the pair in

the center of the unit cell is aSi/4 = 1.36 Å (Edington [109]). The larger of these
spacings should be clearly resolved in all but the 100 keV case, but the smaller of
these two should not be resolved at all without an aberration corrector, consistent
with the calculation in Fig. 5.17.
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5.4.3 Partial Coherence and the Transmission Cross
Coefficient

The BF image intensity distribution is the square modulus of the transmitted wave
function ψt(x) convolved with point spread function h0(x) of the objective lens:

g(x) = |ψt(x) ⊗ h0(x)|2 = [
ψt(x) ⊗ ho(x)

] [
ψ∗

t (x) ⊗ h∗
o(x)

]
(5.31)

The Fourier transform of this equation is:

G(k) =
∫

Ψ ∗
t (k′)H ∗

0 (k′)Ψt (k′ + k)H0(k′ + k)d2k′

=
∫

Tcc(k′, k′ + k)Ψ ∗
t (k′)Ψt (k′ + k)d2k′ (5.32)

where Tcc(k′, k′ + k) is the transmission cross coefficient that is similar to the
function of the same name in light optics (for example, section 10.5.3 of Born and
Wolf [42]). This relationship results in part because g(x) is real, which also means
that G(k) = G∗(−k) and yields an alternate form:

G(k) =
∫

Tcc2(k′, k′ − k)Ψt (k′)Ψ ∗
t (k′ − k)d2k′ (5.33)

(Tcc and Tcc2 are slightly different functions). In the special case of perfectly
coherent image formation the transmission cross coefficient (distinguished by an
additional superscript coh) is:

T coh
cc (k′, k′ + k) = exp

[
iχ(k′) − iχ(k′ + k)

]
A(k′)A(k′ + k) (5.34)

where χ(k) is the aberration function of the objective lens (Eq. 5.27) and A(k)

is the aperture function (Eq. 5.28). The portion of the transmitted wave function
that passes through the objective aperture is combined with itself as illustrated
in Fig. 5.19. Ψt(k) is duplicated and offset by a vector k. The overlap region is

Fig. 5.19 The transmission
cross coefficient in reciprocal
space. Each circle represents
the objective aperture. Only
the overlap region labeled Tcc

contributes to Fourier
coefficient k in the image
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multiplied by the transmission cross coefficient and the integrated value in the
intersection of the two apertures forms a single Fourier component at position k.
The direct implementation (in a program) of the transmission cross coefficient for
coherent imaging is rather inefficient. It would require the calculation of a two-
dimensional convolution at each point of reciprocal space (i.e., for each Fourier
coefficient of the image). The use of the FFT as described above is much more
efficient for coherent image formation.

The transmission cross coefficient, however, provides a mechanism for including
the effects of partial coherence of strong phase objects as was discussed by O’Keefe
[377], Ishizuka [230] and Pulvermacher [408]. (Bonevich and Marks [39] have also
considered some higher order terms that are not discussed here.) If the specimen
is thin enough to satisfy the weak phase object approximation, then the form of
the partial coherence derived in Sect. 3.2 is sufficient; however, if the specimen
contains heavy atoms or is many atoms thick, then it may not be a weak phase
object and a more detailed accounting of partial coherence is required. From the
discussion on partial coherence in Sect. 3.2 the actual image will be formed with a
small distribution of illumination angles and defocus values:

g(x) =
∫ ∣∣ψt(x) ⊗ h0(x,Δf + δf , kβ)

∣∣2 p(kβ)p(δf )dδf d2kβ (5.35)

where δf is the deviation in defocus, kβ is the deviation in illumination angle, and
p(δf ) and p(kβ) are their distributions. If the specimen is thin enough so that its
geometrical extent along the optic axis can be ignored (as has been assumed in this
chapter), then the illumination angle can be included in either the specimen or the
transfer function of the objective lens. When included as part of the objective lens
the integration over δf and kβ can be completely contained within the transmission
cross coefficient without modifying the transmitted wave function ψt(x). The
transmission cross coefficient with partial coherence becomes:

Tcc(k′, k′ + k)

=
∫

exp
[
iχ(k′ + kβ,Δf + δf ) − iχ(k′ + k + kβ,Δf + δf )

]

×A(k′ + kβ)A(k′ + k + kβ)p(δf )p(kβ)dδf d2kβ (5.36)

If the deviations from the coherent mode are assumed to be small, then this
expression can be Taylor expanded to first order in δf and kβ as:

Tcc(k′, k′ + k)

= T coh
cc

∫
exp

{
i

[
kβ · ∂

∂k
+ δf

∂

∂Δf
+ δf kβ · ∂2

∂k∂Δf
+ · · ·

]

× [χ(k′) − χ(k′ + k)
] }

p(δf )p(kβ)dδf d2kβ (5.37)

where the small variation of the aperture function with kβ has been ignored
(or equivalently the aperture diameter is much larger than the maximum spatial
frequency of interest in the image). The indicated derivatives are:
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WC1 = ∂

∂k

[
χ(k′) − χ(k′ + k)

]

= 2πλ3Cs[|k′|2k′ − |k′ + k|2(k′ + k)] + 2πλΔf k

+2πλ5Cs5

[
|k′|4k′ − |k′ + k|4(k′ + k)

]
(5.38)

WC2 = ∂

∂Δf

[
χ(k′) + χ(k′ + k)

]

= −πλ[|k′|2 + |k′ + k|2] (5.39)

∂2

∂k∂Δf
[χ(k′) − χ(k′ + k)] = 2πλk (5.40)

where the auxiliary symbols WC1 and WC2 will be used to simplify the derivation.
Substituting for the derivatives yields:

Tcc(k′, k′ + k)

= T coh
cc

∫
exp{ikβ · WC1 + iδf WC2 + 2πiλδf kβ · k}

×p(δf )p(kβ)dδf d2kβ (5.41)

Note that WC1 is a two-dimensional vector quantity, as are all odd powers of k.
Assume that both the defocus and illumination angles have a Gaussian distribution:

p(δf ) = 1

Δ0
√

π
exp(−δ2

f /Δ2
0) (5.42)

p(kβ) = 1

k2
s π

exp(−k2
β/k2

s ) (5.43)

where δf and ks are the 1/e widths of the two distributions. First perform the
integration with respect to kβ giving:

Tcc(k′, k′ + k)

= T coh
cc

∫
exp

[
+iδf WC2 − k2

s |WC1 + 2πλδf k|2/4
]
p(δf )dδf (5.44)

Note that this is equivalent to Fourier transforming the distribution function p(kβ).
Next perform the integration with respect to δf , and use β = λks (i.e., the condenser
angle in radians) to give:

Tcc(k′, k′ + k) = T coh
cc

1
√

1 + π2β2Δ2
0k

2

× exp

[

− β2

4λ2
W 2

C1 + Δ2
0

4

(πβ2k · WC1/λ − iWC2)
2

1 + π2β2Δ2
0k

2

]

(5.45)
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The total transmission cross coefficient is a complicated damping factor whose net
effect is similar to that for the weak phase approximation with linear imaging.
However, the total transmission cross coefficient is much more complicated to
calculate (note the vector nature of several components in the exponential factor).
It is not separable into factors that depend only on k′ and factors that depends only
on k′ + k. The image calculation with this form of partial coherence cannot be done
using FFTs but must be done by an explicit weighted convolution in two dimensions
(at each point in reciprocal space). This adds considerably to the required computer
time but it is valid for a strongly scattering specimen with a negligible geometrical
thickness such as several atomic layers of heavy atoms. If one of the deviations
(defocus or angle) is small it may be more efficient to perform one integration
analytically and the other numerically (possibly using FFTs) than to calculate the
two-dimensional convolution (Coene et al. [66]).

5.5 ADF STEM Images of Thin Specimens

In the STEM the objective lens acts on the electron beam before the beam interacts
with the specimen in opposite order from the CTEM. The electrons that pass through
the specimen and get scattered at high angles form the annular dark field or ADF
signal. The wave function ψp(x) of the focused probe incident upon the specimen
at position xp is formed by integrating the aberration wave function exp[−iχ(k)]
over the objective aperture as:

ψp(x, xp) = Ap

∫ kmax

0
exp[−iχ(k) − 2πik · (x − xp)]d2k (5.46)

where λkmax = αmax is the maximum angle in the objective aperture and Ap is a
normalization constant chosen to yield:

∫
|ψp(x, xp)|2d2x = 1 (5.47)

In a practical sense the probe wave functions are easiest to calculate in Fourier space
and then apply an inverse FFT.

ψp(x, xp) = ApFT −1 {exp[−iχ(k) + 2πik · xp]A(k)
}

(5.48)

where A(k) is the aperture function (Eq. 5.28). A graph of the ADF-STEM probe
wave functions with the optimum probe conditions is shown in Fig. 5.20. This is a
complex valued function and the relative weighting of the real and imaginary parts
can change dramatically with defocus, etc.

The probe wave function is incident on the specimen and is modulated by the
specimen transmission function t (x) as it passes through the specimen. The wave
function transmitted through the specimen is:
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Fig. 5.20 Profile of the ADF-STEM probe wave functions (real and imaginary parts on top and
amplitude and phase on bottom) for an electron energy of 200 keV, spherical aberration Cs =
1.3 mm, defocus Δf = 497 Å, and an objective aperture of αmax = 8.88 mrad (optimum probe
conditions). The effects of a finite source size have been ignored. The phase is in units of 2π

radians

ψt(x, xp) = ψp(x, xp)t (x)

= ψp(x, xp) exp[iσevz(x)] (5.49)

In the STEM mode the transmitted wave function already has the effects of the
objective lens aberration in it, unlike the CTEM mode where the objective lens
effects enter after the wave function passes through the specimen. After passing
through the specimen the transmitted wave function is then diffracted into the far
field (i.e., the diffraction plane) and hits the ADF detector. Diffraction into the far
field is equivalent to a Fourier transform of the transmitted wave function.

Ψt(k) = FT [ψt(x)] (5.50)

The detector integrates the square modulus of the wave function in the diffraction
plane to form the ADF-STEM signal at this point in the image (corresponding to the
probe position xp):
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Table 5.3 Steps in the calculation of STEM images of thin specimens

Step 1 Calculate the projected atomic potential vz(x) from Eq. 5.19 or 5.21

Step 2 Calculate the transmission function t (x) = exp[iσevz(x)] (Eq. 5.25) and symmetri-
cally bandwidth limit it

Step 3 Calculate the probe wave function ψp(x, xp) at position xp (Eq. 5.46, and 5.48)

Step 4 Multiply the probe wave function by the specimen transmission function t (x) =
exp[iσevz(x)] to get the transmitted wave function ψt (x)

Step 5 Fourier transform the transmitted wave function to get the wave function in the far
field (diffraction plane)

Step 6 Integrate the intensity (square modulus) of the wave function in the diffraction plane
including only those portions that fall on the annular detector (Eq. 5.51). This is the
signal for one point or pixel in the image

Step 7 Repeat step 3 through step 6 for each position of the incident probe xp

g(xp) =
∫

D(k)|Ψt(k, xp)|2d2k (5.51)

where D(k) is the detector function:

D(k) = 1 on the detector

= 0 otherwise (5.52)

This process is repeated for each new position of the probe as it is scanned across
the specimen (usually in a raster fashion). If D(k) is a small point on the axis, then
the image is a bright field image and the discussion of Sect. 5.4 also applies via
the reciprocity theorem. If the detector is a large annulus covering only high angle
scattering, then the image is an ADF (or annular dark field) image which is the focus
of this section. This procedure is restated in algorithmic form in Table 5.3. The
incoherent image model (Eq. 3.70) captures many of the features of this calculation
but is much faster (approximately as fast as the phase grating calculation) and may
be a better approach in many cases.

5.5.1 Single Atom Images

The ADF detector in the STEM typically covers very large angles which will require
some changes to the sampling of the potential. First consider an image calculation
of the five single atoms used in Fig. 5.13 for BF-CTEM phase contrast. The image
is sampled in a 50 Å by 50 Å area. To get a scattering angle of 200 mrad at 200 keV
it requires that 0.5λNx/a ≥ 200 mrad. Therefore the potential and wave functions
should be sampled with 1024 pixels in each direction to get the large angles required
for the ADF detector.
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Fig. 5.21 Line scan of the ADF-STEM image intensity through the center of five isolated single
atoms and an incident electron beam energy of 200 keV. The electron optical parameters are
spherical aberration Cs = 1.3 mm, defocus Δf = 500 Å, and an objective aperture of 8.9 mrad
(optimum probe conditions). The ADF detector covers 35–200 mrad. This was calculated with a
sampled image of 1024 × 1024 pixels (atomic number Z = 6, 14, 29, 79, 92)

Figure 5.21 shows a line scan through the five single atoms used in Fig. 5.13.
The transmission function (Fig. 5.11) is the same for both CTEM and STEM. The
vertical axis is the portion of the incident probe intensity that falls on the ADF
detector. The ADF signal (Fig. 5.21) is normalized slightly differently from the BF
signal (Fig. 5.11) because of the different way in which they are generated. The ADF
signal is relative to the total incident beam current but the BF signal is relative to
the incident beam current density (the incident beam has a uniform intensity of one
at all positions).

Even though the ADF signal and the BF signal are normalized differently it is
apparent that the ADF signal is much weaker than the BF signal. However the ADF
signal shows a much stronger contrast between heavy and light atoms. It is even
possible to image single heavy atoms on thin carbon supports many atoms thick due
to the large increase in signal with atomic number Z (see, for example, Crewe et al.
[83], Isaacson et al. [227], and Langmore et al. [303]). The peak single atom signal
in ADF-STEM for all atoms is shown in Fig. 5.22 as a function of atomic number
Z for four different electron beam energies. This smooth variation of the ADF-
STEM signal with atomic number Z leads to Z-contrast imaging as popularized by
Pennycook [396, 397]. The ADF-STEM signal varies as approximately Z1.5–Z1.7

(mainly varies with the inner angle of the detector). Treacy [495] has compared
the Z dependence for various atomic potential approximations. Spherical aberration
was fixed at Cs = 1.3 mm and optimal conditions were used for the defocus and
the objective aperture. The inner angle of the ADF detector was set to four times
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Fig. 5.22 Single atom peak signal in ADF-STEM versus atomic number Z for 60, 100,
200, and 400 keV. Spherical aberration was fixed at Cs = 1.3 mm with optimum values of
defocus (0.87

√
CS3λ = 692, 603, 497, 402 Å) and objective aperture of (1.34 (λ/CS3)

1/4 =
10.5, 9.8, 8.9, 8.0 mrad. The ADF detector extended from 4 to 20 times the objective aperture

the objective aperture and the outer angle was twenty times the objective aperture
(this should integrate everything scattered beyond the inner angle). It is interesting
that the single atom signal decreases with increasing electron beam energy contrary
to BF phase contrast signal shown in Fig. 5.14. As energy increases the resolution
should also increase making a larger peak signal. However, higher energy also
scatters less to large angle (on the ADF detector) making the signal smaller which
seems to be a larger effect here. The apparent signal decreases with increasing
resolution in ADF-STEM. Also note that the weak phase object approximation may
have small errors at 100 keV for very heavy atoms (Z near 100).

5.5.2 Thin Specimen Images

To simulate an image of (110) silicon also requires more sampling points than you
might think at first. The image sequence given in Figs. 5.16 and 5.17 has a supercell
size of a × b = 26.89 × 27.15 Å. The ADF-STEM detector collects large angles.
To get θd ∼ 200 mrad on the detector requires that the number of pixels in each
direction be increased to about Nx > 2aθd/λ ∼ 429 pixels. The nearest power of 2
(for the FFTs) is 512 × 512 pixels.
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Fig. 5.23 Calculated ADF-STEM image of 110 silicon (4 atoms thick) in a thin phase object
approximation with spherical aberration of Cs = 1.3 mm and three different beam energies. (a)
100 keV Δf = 603 Å, αmax = 9.8 mrad. (b) 200 keV, Δf = 497 Å, αmax = 8.9 mrad. (c) 400 keV,
Δf = 402 Å, αmax = 8.0 mrad. All are optimum STEM conditions. (d) 100 keV ideal aberration-
corrected STEM image Δf = 0, αmax = 30 mrad. The wave function was sampled with 512×512
pixels but the final image is calculated for 256 × 256 pixels. The scale bar in (a) is 10 Å. The ADF
detector extended to 200 mrad from (a) 45 mrad, (b, c) 40 mrad, and (d) 80 mrad. The image ranges
are (a) 0.00033–0.00133, (b) 0.00018–0.00072, (c) 0.00003–0.00039, and (d) 0–0.00331. White
is a larger positive number. Atoms should appear white in all images

Figure 5.23 shows the ADF-STEM image in the thin object approximation for
three different energies (compare to Fig. 5.17). The specimen was four atoms thick
and the signal is of the order of 10−3–10−4 of the incident beam intensity. The
ADF detector spanned an angular range of 40–200 mrad for the 200 and 400 keV
images, 45–200 mrad for the uncorrected 100 keV image, and 80–200 mrad for the
aberration-corrected image. The ADF signal with a large detector is an incoherent
image mechanism and gives a slightly better resolution, however, with a smaller
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Fig. 5.24 The transfer function for an incoherent annular dark field STEM image in under
optimum conditions. Spherical aberration is Cs = 1.3 mm and the electron energy varies from
100 to 400 keV. Two spacings relevant to the 110 projection of silicon are shown for comparison.
1.36 Å is the spacing between the dumbbells and 3.13 Å is the spacing of the lowest order allowed
reflection in the projected unit cell

signal. The characteristic dumbbell structure of silicon atom pairs (in the 110
projection) should be resolved at these beam energies and spherical aberration
values. This ADF image does not rely on complicated scattering mechanisms like
thermal diffuse scattering or high order Laue zones, but does qualitatively reproduce
the features of an ADF-STEM image.

The simulated images in Fig. 5.23 are consistent with the incoherent annular dark
field transfer functions as shown in Fig. 5.24. Both of the indicated spacings for the
110 projection of silicon can be resolved at the higher beam energies (compare
to Fig. 5.24).

An experimental image of the 110 projection of silicon taken at 100 keV with
an aberration-corrected instrument is shown in Fig. 5.25. The dumbbell spacing of
1.36 Å is just barely resolved in this image. If only the geometrical lens aberration
were considered for this image the probe size should be 1.0 Å or less (and 1.36 Å
should be better resolved); however, this image may be source limited. The tip was
nearing the end of its life and probably produces a larger than normal source size
(lower brightness). A sequence of images calculated in the simple incoherent image
model (Eq. 3.70) with different source sizes (Eq. 3.79) is shown in Fig. 5.26. There
is a reasonable match to image (d) with a 1 Å source size. This produces more
beam current (good) but reduces the obtainable resolution (usually bad). Part of this
apparent source size blurring may also be due to a small stage vibration of about
0.5 Å (which appears not to have a preferred direction). It is equally probable that
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Fig. 5.25 Experimental
ADF-STEM image of 110
silicon recorded on a NION
Ultra-STEM at 100 keV
(aberration corrected to third
order with reduced fifth
order) with 512 × 512 pixels
and a 35 mrad objective
aperture. The scale bar is 5 Å.
Atoms should appear white.
This image has been averaged
over four frames and low pass
filtered to a little above the
instrumental resolution

this instrument has significant systematic aberration tuning errors (as in Figs. 3.23
and 3.24) which produces a larger probe with long Lorentzian like tails. Source
size effects will vary with source magnification (condenser magnification) but
tuning errors will not, which is one experimental approach of determining the
cause but is rarely done (this instrument rarely showed much change of image
quality with source magnification). The higher the resolution the more severe are the
requirements on instrumental stability of all types.

5.6 Annular Bright Field (ABF)

Annular bright field (ABF) is a relatively new mode of operation, in which the
STEM annular detector overlaps the outer half of the objective aperture (see Fig. 2.4,
Findlay et al. [135, 136] and Ishikawa et al. [228]). This mode is something in
between bright field (BF) and annular dark field (ADF) and should be similar
to hollow cone illumination in CTEM (Rose [424], Kunath et al. [302]). Earlier
theories tend to use only the weak phase approximation which leaves out some
important features of the image. Bosch and Lavić [43] have also discussed the theory
of ABF images for thin specimens. ABF images may be calculated with the same
procedure as ADF-STEM images but integrating over smaller detector angles.

There is not yet an obvious easy approach to define the optimum optical
conditions independent of the specimen as was done for BF and ADF. ABF will
likely have some elements of phase contrast and involves low angle scattering so
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Fig. 5.26 Simple incoherent ADF-STEM images at 100 keV (Cs3 = 0 and Cs5 = 5 mm, 0 defocus
and a 35 mrad obj. apert.). The scale bar is 5 Å. The source size is (a) 0.1 Å, (b) 0.2 Å, (c) 0.5 Å,
(d) 1.0 Å

may vary significantly with specimen thickness. To find the appropriate optical
conditions as independent of specimen thickness as possible, consider a single
atom image in the middle of the periodic chart. The peak signal from a single
iron (Z = 56) atom relative to the background is shown in Fig. 5.27 for similar
conditions as for BF and ADF in the previous sections. Iron is approximately the
middle of the periodic chart so is in some sense an average atom (the optimum
optical conditions may vary with atomic number). The largest signal can be used as
a proxy for the image with the best resolution (easy to calculate). Higher resolution
likely produces a thin tall profile (a larger signal tends to be sharper). A similar
calculation for low atomic number (carbon with Z = 6) produced a similar graph
but small shifts in the optimum positions. This approach is only approximate but is
a start until a more concrete theory presents itself. A similar calculation for ADF-
STEM produced a result similar to Fig. 3.17 with a single well-defined position for
the optimum conditions.

There are several different combinations (positions in Fig. 5.27) that seem to
produce a large single atom signal. ABF can be optimized for both positive contrast
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Fig. 5.27 ABF single atom signal (Z = 56, iron) versus defocus and objective aperture at 200 kV.
CS3 = 1.3 mm. The ABF aperture covered the outer half of the objective aperture. Positive values
are solid lines and negative values are dashed lines

and negative contrast. Two positions produce a maximum positive signal and one
position produces a maximum negative signal. Negative contrast (negative peak
signal) seems to produce a larger signal and might be more desirable. A line
scan through several different atoms is shown in Fig. 5.28. The positive contrast
conditions produce a smaller signal and may have a double peak for large atomic
numbers (not good). The negative contrast conditions produce a larger signal with
a more appropriate shape so the negative contrast conditions are probably better in
general (for thin specimens).

The variation of the ABF signal versus atomic number is shown in Fig. 5.29. The
dependence of the single atom signal on atomic number is in between that of BF
and ADF as might be expected from the size and position of the detector. The ABF
signal involves low angle scattering so still includes some variations of the periodic
chart as conventional bright field.

With an aberration corrector spherical aberration and other low order aberrations
can be controlled. Figure 5.30 show the variation of the single atom signal versus
defocus and the inner angle of the ABF detector similar to that in Fig. 5.27. Again it
is possible to obtain either positive or negative contrast. With a larger objective
aperture the usable range of defocus becomes much smaller and the optimum
defocus becomes closer to zero. Only a small change in defocus can switch the
contrast from positive to negative which might make this imaging mode a little more
ambiguous (are atoms white or black?). The optimum inner angle seems close to a
relative value of 0.5 which is used typically.
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Fig. 5.28 ABF single atom profile at 200 kV and CS3 = 1.3 mm for a few atomic numbers. The
ABF aperture covered the outer half of the objective aperture. Top: largest positive signal (Δf =
763 Å, αmax = 9.07 mrad), and bottom; largest negative signal (Δf = 100 Å, αmax = 7.95 mrad)

The calculated ABF images for 110 silicon are shown in Fig. 5.31. The images
without an aberration corrector are shown in part (a) and (b). The images for an
aberration-corrected ABF-STEM are shown in part (c) and (d) for negative contrast
and positive contrast, respectively.

5.7 Summary of Sampling Suggestions

The previous sections discussed sampling requirements for some specific cases in
an anecdotal manner. There is really no easy way to calculate the required pixel
size (sampling requirements) for every case in general. Usually you have to make
an estimate of the sampling requirements, calculate an image with this estimate and
compare to another calculation with better sampling (more and smaller pixels, etc.).
If there is no significant change between the calculated images at two different pixels
sizes (and number of pixels per image), then this is an indication that the image is
correct. The deviation between two different calculations with different pixels sizes
and number of pixels can also be used to estimate the error of the simulation itself.
Table 5.4 gives a list of suggestions for the initial sampling sizes.
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Fig. 5.29 The peak ABF single atom signal versus atomic number Z at 60, 100, 200, and 400 kV
with the ABF aperture covering the outer half of the objective aperture. CS3 = 1.3 mm and
optimum defocus values of 199, 135, 100, 49 Å, and objective aperture of 9.5, 8.8, 8.0, 7.0 mrad
(to obtain the largest signal for Z = 56) were used.

Fig. 5.30 The peak ABF single atom (Z = 56, iron) signal for 200 kV and an objective angle
of αmax = 30 mrad versus defocus and the relative inner angle of the ABF detector for an ideal
aberration-corrected image (all aberrations except defocus assumed negligible). Positive values are
solid lines and negative values are dashed lines
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Fig. 5.31 Calculated ABF-STEM image of 110 silicon (4 atoms thick) in the thin specimen
approximation with spherical aberration of Cs = 1.3 mm and three different beam energies.
(a) 200 keV, Δf = 100 Å, αmax = 8.0 mrad. (b) 400 keV, Δf = 50 Å, αmax = 7.0 mrad.
All are optimum ABF-STEM conditions. (c) 200 keV ideal aberration-corrected STEM image
Δf = 0, αmax = 30 mrad. (d) 200 keV ideal aberration-corrected STEM image Δf = 20, αmax =
30 mrad. All have an inner detector angle of half the objective except (d) which is 0.7 of the
objective. The wave function was sampled with 512 × 512 pixels but the final image is calculated
for 256 × 256 pixels. The scale bar in (a) is 10 Å. The image ranges are (a) 0.735–0.755, (b)
0.747–0.767, (c) 0.738–0.751, and (d) 0.548–0.598. White is a larger positive number. Atoms
should appear black in (a) through (c) and white in (d)
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Table 5.4 Initial sampling suggestions for calculating images of thin specimens

1 The transmission function t (x) (Eq. 5.25) should be symmetrically bandwidth
limited

2 The real space pixel size Δx and Δy should be less than about d0/3 to d0/4
where d0 is the resolution of the instrument

3 The reciprocal space pixel size Δkx and Δky should be less than about kobj /10
where λkobj is the maximum semiangle in the objective aperture

4 The maximum angle in reciprocal space λkx−max and λky−max should be about
twice the maximum angle in the objective aperture (for CTEM) or slightly
bigger than the maximum angle on the ADF-STEM detector (for STEM)



Chapter 6
Theory of Calculation of Images of Thick
Specimens

This chapter discusses how to calculate images of thick specimens including the
effects of multiple or plural scattering in the specimen and the geometrical extent
of the specimen along the optic axis of the electron microscope (the z direction).
The electron interacts strongly with the specimen and can scatter more than once
as it passes through specimens as thin as 10–50 Å. When the electron can scatter
more than once as it passes through the specimen the scattering is said to be
dynamical. If the electron can only scatter once when passing through the specimen
the scattering is said to be kinematical. The electron interaction in Chap. 5 is
kinematical and the scattering processes discussed in this chapter are dynamical.
Dynamical scattering also exists in X-ray diffraction (Batterman and Cole [25]) of
thick specimens.

The instrumental aspects of the electron microscope and the passage of the
electrons through the microscope are identical to what has already been described
in previous chapters. This chapter will focus almost entirely on the relatively short
portion of the electron trajectory as it passes through the specimen. Although this is
a very short part of the electron’s trajectory it is the most difficult to fully calculate
because the electron interacts strongly with the specimen and can be scattered many
times while passing through the specimen. In many ways this is one of the most
interesting portions of the electron’s path through the microscope because of the
information about the specimen that it reveals.

The theory of dynamical electron diffraction has been studied by many authors
over a large portion of the last century. Bethe [31] first discussed dynamical
scattering in 1928 in the context of electron diffraction (i.e., electron microscopes
had not yet been invented). Bethe started with the Schrödinger equation and Fourier
expanded the crystal potential and the electron wave function with components that
match the underlying periodicity of the crystal lattice. The Fourier components of
the wave function have since become known as Bloch waves in analogy with Bloch’s
Theorem in solid state physics (see for example Ashcroft and Mermin [20] or Kittel
[286]). Bethe solved for the three dimensional eigenvalues of the electron wave
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function in a crystalline specimen with the appropriate boundary conditions on the
entrance and exit face of the crystal. Niehrs and Wagner [373], Fujimoto [152],
and Sturkey [478] later organized the Bloch wave solution into a scattering matrix
solution and Tournaire [493] developed a related reciprocal space matrix solution.
Fertig and Rose [128], Pennycook and Jesson [398–400], and Nellist and Pennycook
[369] have extended the Bloch wave analysis to scanning transmission (STEM)
microscopy. Howie and Whelan [219] used a different starting point but ended up
with a set of coupled first order differential equations similar to the Bloch wave
solution. Van Dyck [501] and Jap and Glaeser [243] have independently developed
a path integral formulation of dynamical scattering. The history of the development
of the theory of dynamical diffraction of electrons has been given by Cowley [74],
Self et al. [452], Van Dyck [506], and Watanabe [526].

Cowley and Moodie [78] considered the dynamical scattering problem by
starting from a physical optics point of view and derived a method that has
become known as the multislice method. In this method the specimen is divided
into thin two-dimensional slices along the electron beam direction (like a loaf of
sliced bread). The electron beam alternately gets transmitted through a slice and
propagates to the next slice. Each slice is thin enough to be a simple phase object and
the propagation between slices is determined using Fresnel diffraction. Goodman
and Moodie [162] later expanded the multislice theory into an accessible form
appropriate for numerical implementation on a computer and showed how various
methods of dynamical scattering calculations were related. Allpress et al. [12] and
Lynch and O’Keefe [325] first implemented the multislice method on a computer
to confirm the interpretation of high-resolution CTEM images of niobium oxides.
Comparison of simulated images to images of known structures confirmed that
image simulation with the multislice method could reliably simulate the observed
image structure (Allpress and Sanders [13]). The availability of simulation programs
such as SHRLI O’Keefe et al. [380] and O’Keefe and Buseck [379] lead to wide
spread use of simulation in high-resolution image interpretation in CTEM. Ishizuka
and Uyeda [236] produced a more rigorous quantum mechanical derivation of the
multislice method and coincident with Bursill and Wilson [51] introduced the use of
the fast Fourier transform or FFT which greatly reduced the computer time required
for an image simulation. Cowley and Spence [81] have extended the multislice
method to the calculation of convergent beam electron diffraction patterns (CBED),
Kirkland et al. [279] also extended it to include ADF-STEM image calculations, and
Ishizuka [233] has presented some alternative suggestions to include the thermal
diffuse scattering. Van Dyck [504, 505, 507], Coene and Van Dyck [64, 65], and
Kilaas and Gronsky [258] recently proposed the so-called real space method which
is related to the multislice method but performs the convolution and transmission in
real space. The real space method may have advantages in some situations. O’Keefe
[378] and Ishizuka [234] have recently reviewed the history of the multislice
method.

If N is the number of Fourier components (also referred to as beams or Bloch
waves), then any direct matrix solution will require the storage of N2 elements in
computer memory. The computer time required for a matrix multiplication scales as
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N2 and the time for the direct solution of a matrix equation or eigenvalue problem
scales as N3 (see for example Press et al. [406]). When there are a large number of
beams (more than about 10 or 20) a direct matrix (Bloch wave) solution becomes
very inefficient and the multislice solution using the FFT will prove to be much more
efficient in computer time and memory requirements. Bloch wave matrix solutions
can be obtained by hand with pencil and paper if there are only a small number
of Bloch waves involved (two or three). This typically means that the specimen
has to be a perfect crystal with a small unit cell projected along a high symmetry
axis. Analytical Bloch wave solutions can provide valuable insight into the imaging
process; however, small unit cell bulk crystal structures are already known (usually
from X-ray diffraction) and there is no more than an academic interest in examining
them again in the electron microscope. Most (nonbiological) specimens of interest
contain interfaces or defects or are entirely amorphous. These specimens require
relatively large numbers (many thousands) of beams or Bloch waves making a
Bloch wave matrix solution impractical. The multislice method is generally much
more efficient and easier to implement numerically on the computer and it is
flexible enough to simulate defects and interfaces. The storage requirements for the
multislice method scale as N and with the addition of the fast Fourier transform
the computer time scales as approximately N log2 N . The multislice method is
usually much more efficient for calculating dynamical electron diffraction patterns
and images Goodman and Moodie [162] and Self et al. [452].

The multislice method solves the problem of propagation of a quantum mechan-
ical wave packet through a potential. This is a rather general problem and it
is not surprising that similar methods have evolved in fields other than electron
microscopy. For example, the propagation of radio waves through an atmosphere
can be treated in a method similar to the multislice method (Cordes et al. [69],
French and Lovelace [148], and Pidwerbetsky and Lovelace [402]). Molecular
dynamics problems in chemistry also can be studied using a method similar to the
multislice method (Kosloff [293]). The split-step Fourier method (for example, Feit
and Fleck [126, 138] or Agrawal [3] section 2.4) is a numerical method used to
calculate the propagation of light through a nonlinear media that is essentially the
same as the multislice method.

As discussed in Sect. 2.3 the electrons in the microscope have enough energy
that they should be treated with the relativistic Dirac wave equation with spin
for a precise calculation. However the simpler approach of ignoring the electron
spin and using the nonrelativistic Schrödinger equation with the relativistic mass
and wavelength will again be used because it is much easier to work with. This
approximation is reasonably accurate at 100 keV but may introduce small errors at
energies of order 1000 keV or higher.

The specimen is almost always placed near the peak magnetic field of the
objective lens (of order 1 T or 10 kG). The electrons travel through the specimen
while in a large magnetic field. Solving the problem with both the electrostatic
interaction between the imaging electrons and the specimen and the imaging
electrons and the magnetic field can be very difficult. The electron path deviation
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due to the magnetic field of the objective lens is on the scale of the focal length of
the objective lens (about 1 mm). The electron path deviation due to the electrostatic
interaction with the atoms in the specimen is on the scale of the specimen thickness
(a few hundred Angstroms). Therefore it is a reasonable approximation to neglect
the action of the objective lens magnetic field on the scale of the specimen thickness.
The electron trajectories while passing through the specimen will be calculated as
if there were no external magnetic field present. This makes the problem somewhat
easier to deal with.

Calculating the image given the atomic structure of the specimen is difficult
enough (as will be seen). The inverse problem of calculating the atomic structure
given the recorded image is even more difficult. The idea of an inverse multislice
calculation has been around for a long time but few have had the courage to try
it. Gribelyuk [168], Beeching and Spargo [27, 28] have proposed approaches for
an inverse multislice calculation. Spargo et al. [467], Allen et al. [7, 9, 10], Spence
et al. [469, 471], and O’Leary et al. [385] have considered the inverse problem using
Bloch waves.

6.1 Bloch Wave Eigenvalue Solution

There is a long history of Bloch wave eigenvalue calculations starting with Bethe
[31], with many worthwhile treatments in the literature, too numerous to mention
all of them. Some recent reviews have been given by (for example) Humphreys
[220], Spence [470], Spence and Zuo [474], deGraf [164], and Zuo and Spence
[550]. Bloch wave solutions of ADF-STEM have been considered by Fertig and
Rose [128], Pennycook and Jesson [398], Nellist and Pennycook [368], Watanabe
et al. [529], and Allen et al. [8]. Bloch wave solutions for scanning confocal have
been considered by Mitsuishi et al. [350].

6.1.1 Bloch Waves

The electron wave function can be expressed as a linear combination of any
complete basis set. However, there is an advantage in using a basis set that also
satisfies the Schrödinger equation in the specimen (with the same periodicity as the
crystal) which are called Bloch waves. Expand the electron wave function in Bloch
waves b(kj , r) and their associated parameters kj (scattering wave vectors on the
Ewald sphere):

ψ(x, y, z) = ψ(r) =
∑

j

αj bj (kj , r) (6.1)
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Fig. 6.1 The Bloch wave picture. The incident electron wave (plane wave for CTEM) becomes a
superposition of Bloch waves inside the specimen. The properties of the Bloch wave determine the
form of the wave that exits the specimen

With these Bloch waves any set of coefficients αj are allowed inside the (crystal)
specimen but only one set will also match the incident wave function. There is an
implicit assumption that the specimen is crystalline (periodic) so this approach may
not work well for amorphous specimens.

Conceptually, the specimen can be thought of as a converter or filter that converts
the incident electron (plane wave for BF CTEM, and probe for STEM) into a
superposition of Bloch waves inside the (crystalline) specimen as in Fig. 6.1. The
wave function and its first derivative must be continuous at the (top) entrance
surface, which determines which Bloch waves will be initiated in the specimen.
After entering the specimen the electrons propagate as Bloch waves and finally leave
through the exit surface (bottom) of the specimen and are imaged by the objective
lens. The characteristics of these Bloch waves determine how the electrons travel
through the specimen. Hopefully, the strongest Bloch waves are representative of
the actual structure in the specimen.

Each Bloch wave must satisfy the Schrödinger equation in the (usually crystal)
specimen:

[

− h̄2

2m
∇2 − eV (x, y, z)

]

bj (kj , r) = Ebj (kj , r) (6.2)

where h̄ = h/2π is Planck’s constant divided by 2π , m = γm0 is the relativistic
mass of the electron, e = |e| is the magnitude of the charge of the electron, E is
the kinetic energy of the electron, and −eV is the potential energy of the electron.
V is the potential of the atoms in the specimen. The energy E will remain constant
because elastic scattering is assumed, except for a slight increase due to the average
inner potential of the specimen (with a related decrease in wavelength). The wave
vector k0 and energy of the incident wave (inside the specimen) are:
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k0 = 1

λ
(6.3)

E = h2k2
0

2m
= h2

2mλ2
(6.4)

where λ is the relativistically corrected electron wavelength. The Schrödinger
equation becomes:

[

− h̄2

2m
∇2 − eV (x, y, z)

]

bj (kj , r) = h2k2
0

2m
bj (kj , r) (6.5)

[
∇2 + 4π2k2

0

]
bj (kj , r) = −4π2

(
2me

h2

)
V (r)bj (kj , r)

= −4π2U(r)bj (kj , r) (6.6)

U(r) = 2me

h2 V (r) = σ

πλ
V (r) (6.7)

where σ is the interaction parameter.
Each Bloch wave is basically a plane wave that is forced to have the periodicity

of the (crystalline) specimen by multiplying by a linear combination of plane waves
in three dimensions (a Fourier series):

bj (kj , r) = exp[2πikj · r]
∑

G

CGj exp[2πiG · r]

=
∑

G

CGj exp[2πi(kj + G) · r] (6.8)

The set of vectors G = (Gx,Gy,Gz) = (h/a, k/b, l/c) are typically the reciprocal
lattice vectors of the specimen. The unit cell size of the specimen is (a, b, c) and
(h, k, l) are integer indexes. In principle there are an infinite number of G vectors
but in practice only a small number will typically be used. There is a different set of
CGj coefficients for each Bloch wave j .

6.1.2 Periodic Potential

Expand the specimen potential in a three-dimensional Fourier series in the indepen-
dent atom model (Eq. 5.19) as:

V (x, y, z) = V (r) =
∑

G

VG exp[2πiG · r] (6.9)
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VG = h2

2πm0e

1

Ω

∑

j

fej (|G|) exp(−2πiG · rj )

= 2πea0

Ω

∑

j

fej (|G|) exp(−2πiG · rj )

= 47.86

Ω

∑

j

fej (|G|) exp(−2πiG · rj ) (6.10)

where fej (q) is the electron scattering factor (in Angstroms) in the first Born
approximation of the j th atom, e and m are the charge and mass of the electron,
a0 is the Bohr radius, Ω is the unit cell volume (in cubic Angstroms), and VG is in
volts. The summation over j is over all atoms in the unit cell. The G = 0 term in
Eq. 6.9 is a uniform potential inside the specimen. There is a small computational
advantage in absorbing this term into the electron wavelength (as already done in
Eq. 6.3) so this term will be excluded in later equations.

If the specimen (crystal) has a center of symmetry (centro-symmetric) , then for
every atom at position r there is an identical atom at position −r and the terms in
Eq. 6.10 appear as pairs of complex conjugates making VG real; otherwise, it may
be complex. One possible strategy for finding the important G values is to calculate
all VG up to some maximum magnitude |G| (scan through integers (h, k, l)) and
keep all with |VG| > ε|VG=0| where ε is a small positive number chosen by the user
(perhaps of order 10−5).

6.1.3 Matrix Equation

Insert Eq. 6.9 for the potential (also using Eq. 6.7) and Eq. 6.8 for the Bloch waves
into the Schrödinger equation (6.6). The summation indexes H and G will both
be over the full range of allowed reciprocal lattice vectors G but different letters
are used to separate two different sums. The mean inner potential of the specimen
VG=0 will be included in the wavelength so is dropped from the sum for the potential
and the incident k0 includes a small change of potential inside the specimen. Also
dropping the common factor of 4π2 yields:

∑

G

(
k2

0 − |kj + G|2
)

CGj exp[2πi(kj + G) · r]

= −
⎡

⎣
∑

H �=0

UH exp[2πiH · r]
⎤

⎦
[
∑

G

CGj exp[2πi(kj + G) · r]
]
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= −
∑

H �=0

UH

[
∑

G

CGj exp[2πi(kj + G + H) · r]
]

= −
∑

H �=0

UH

[
∑

X

C(X−H)j exp[2πi(kj + X) · r]
]

= −
∑

H �=0

UH

[
∑

G

C(G−H)j exp[2πi(kj + G) · r]
]

= −
∑

G

⎡

⎣
∑

H �=0

UHC(G−H)j

⎤

⎦ exp[2πi(kj + G) · r]

= −
∑

G

⎡

⎣
∑

H �=G

UG−HCHj

⎤

⎦ exp[2πi(kj + G) · r] (6.11)

where the substitution X = G + H was used in the second line and returned to G
at the end. Some of these steps are not strictly valid unless the range of summation
is infinite, which may not be true in practice (a small approximation). The H = G
term is excluded from the summation because the G = 0 term (inner potential)
has been transferred into the electron wavelength (via k0). Equating coefficients of
exp[2πi(kj + G) · r] yields:

(
k2

0 − |kj + G|2
)

CGj +
∑

H �=G

UG−HCHj = 0 (6.12)

This is a matrix equation where the first term (on the left-hand side) is the diagonal
elements and the second term is the off-diagonal elements. So far no serious
approximations have been made and this expression is reasonably exact. However,
both the kj vectors and the CG coefficients are unknown, so there is no obvious
way to solve this equation. Next, several approximation will be made to get this
equation into a linear form that can be solved. In the process half of the solutions
will be lost, which turn out to be the backscattered electrons (deGraf [164]). These
approximations are similar to those used in the multislice method.

A typical specimen is a thin slab of material perpendicular to the beam direction,
and the incident electron beam is a very high energy traveling in a predominantly z

direction. The incident beam is of order 100 keV or higher and the inner potential V0
of the specimen is of order 10 eV so the kinetic energy does not change dramatically
in the specimen.

k0 ∼ |kj | >> |G| (6.13)
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This is sometimes referred to as the high energy approximation. Also within
this approximation all backscattered electrons will be ignored. In general some
small percentage of electron will reverse direction (backscattered) but these will
be ignored to simplify the mathematics.

Both the electron wave and its first derivative must be continuous across the
entrance surface of the specimen. The inner potential of the specimen (V0) may
change the kinetic energy in the beam direction (k0,z) but the transverse wave vector
must be continuous at the entrance of the specimen. Approximate this requirement
as applying to each individual Bloch wave rather than the wave function as a whole
(weighted sum of Bloch wave vectors). Therefore approximate the Bloch wave
vector as the incident wave vector k0 plus a small term along the beam direction ẑ:

kj ∼ k0 + γj ẑ (6.14)

where γj is a small quantity. Inserting this expression yields:

k2
0 − |kj + G|2 = k2

0 − |k0 + γj ẑ + G|2

= k2
0 − |k0 + G|2 − 2γj (k0 + G) · ẑ − γ 2

j (6.15)

The γ 2
j term may be ignored because γj is a small quantity. Also expanding terms

leaves:

k2
0 − |kj + G|2 = 2k0sG − 2γj (k0 + G) · ẑ

= 2k0sG − 2γj (k0,z + Gz) (6.16)

2k0sG = k2
0 − |k0 + G|2 = −2k0,zGz − |G|2 (6.17)

where sG is a general excitation error. Insert this expression back into Eq. 6.12 to
obtain:

[
2k0sG − 2γj (k0,z + Gz)

]
CGj +

∑

H�=G

UG−HCHj = 0 (6.18)

The high energy approximation says that:

|G| << |k0,z| (6.19)

so the Gz term is usually dropped. However, at 100 kV k0 ∼ 27 Å−1 and |Gmax|
may be 4 or 5 Å−1 for high resolution, in which case Gz is important so this
approximation may not be that good at high resolution (or for the higher order Laue
zones). Rearranging terms and making the high energy approximation leaves:

2k0sGCGj +
∑

H �=G

UG−HCHj = 2γj k0,zCGj (6.20)



152 6 Theory of Calculation of Images of Thick Specimens

This equation is repeated for each G. This is an eigenvalue matrix equation for
the eigenvalues 2γj k0,z and the eigenvectors (set of CGj ). If the specimen is a
centro-symmetric crystal, then the matrix is real and symmetric; otherwise, it may
be complex and Hermitian. The eigenvectors are orthogonal and can be normalized
(most subroutines automatically normalize their results), which will be assumed
later. The eigenvalues will be real.

With N Bloch waves then this is said to be an N-beam calculation. There will
also be N vectors G, N eigenvalues and N eigenvectors (N2 coefficients CGj ).
The memory storage requirements scale as O(N2). Solving the eigenvalue equation
is a computationally difficult problem. The CPU time scales as O(N3) so this
approach is not competitive with the methods that will be discussed later for large N .
However, small unit cells with a lot of symmetry may work well (small N ). Finding
eigenvalues and eigenvectors is also a difficult process. There are several existing
free software libraries with well-developed subroutine for this purpose. Lapack
[15] (www.netlib.org) is probably one of the better packages and in general it is
probably best to use this or similar packages. Lapack is mainly in Fortran but there
are translations in several different programming languages. The GNU Scientific
Library or GSL (www.gnu.org/software/gsl/) is written in C and also has some
useful eigenvalue subroutines. There are also several other eigenvalue software
packages available.

The structure of Eq. 6.20 is easier to see when a specific example is written out.
In practice there will be many hundreds or thousands of beams, but for simplicity
use only a few for this example. The G = 0 term is almost always included to match
the incident beam (typically a plane wave) in CTEM. If there are only four beams
G = 0, D, E, and F that are important then Eq. 6.20 becomes:

⎡

⎢⎢
⎣

0 U−D U−E U−F

UD 2k0sD UD−E UD−F

UE UE−D 2k0sE UE−F

UF UF−D UF−E 2k0sF

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

C0

CD

CE

CF

⎤

⎥⎥
⎦ = 2γ k0,z

⎡

⎢⎢
⎣

C0

CD

CE

CF

⎤

⎥⎥
⎦ (6.21)

The off diagonal elements are essentially the convolution of UG with itself which
may require the calculation of many more values than in the original small set.
There will be four different eigenvalues 2γ k0,z (with associated eigenvectors) in
this example. In condensed matrix notation:

AC = 2γ k0,zC (6.22)

A is an N × N matrix and C is a vector of length N . If the crystal (specimen) is
centro-symmetric, then UG = U∗−G and the matrix is real and symmetric; otherwise,
it is Hermitian.

www.netlib.org
www.gnu.org/software/gsl/
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6.1.4 Initial Conditions and the Exit Wave

If the allowed Bloch wave have been determined (eigenvalues and eigenvectors as
above), then the wave function anywhere in the (crystalline) specimen is known
if the weighting coefficients αj are known. The weighting coefficients can be
determined by matching the wave function at the entrance surface of the specimen
to the given incident wave function. First write the Fourier transform of the wave
function with an explicit z dependence and a propagation in the beam direction k0:

ψ(r) =
∑

G

ψG(z) exp[2πi(k0 + G) · r] (6.23)

Now equate this equation to the Bloch wave expansion, Eqs. 6.1, 6.8, and 6.14:

∑

G

ψG(z) exp[2πi(k0 + G) · r] =
∑

j

αj bj (kj , r)

=
∑

G

∑

j

αj CGj exp[2πi(kj + G) · r] (6.24)

=
∑

G

⎡

⎣
∑

j

αj CGj exp[2πiγj z]
⎤

⎦ exp[2πi(k0 + G) · r] (6.25)

Now equate coefficients of exp[2πi(k0 + G) · r] to obtain:

ψG(z) =
∑

j

αj CGj exp[2πiγj z] (6.26)

which illustrates how each Fourier coefficient of the wave functions propagates with
depth z in the specimen. This equation is also in the form of a matrix equation. Using
the previous example of four G values 0,D,E,F and adding four eigenvalues 0,1,2,3
an example of this equation becomes:

⎡

⎢⎢
⎣

ψ0(z)

ψD(z)

ψE(z)

ψF (z)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

C00 C01 C02 C03

CD0 CD1 CD2 CD3

CE0 CE1 CE2 CE3

CF0 CF1 CF2 CF3

⎤

⎥⎥
⎦

×

⎡

⎢⎢
⎣

e2πiγ0z 0 0 0
0 e2πiγ1z 0 0
0 0 e2πiγ2z 0
0 0 0 e2πiγ3z

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

α0

α1

α2

α3

⎤

⎥⎥
⎦ (6.27)
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In condensed matrix notation:

ψ(z) = C[exp(2πiγj z)]α (6.28)

where ψ(z) is a column vector of ψG. Each column of the C matrix containing
the CGj coefficients is an eigenvector of Eq. 6.20. The vector ψ(z) contains the
ψG(z) terms and [exp(2πiγj z)] denotes a diagonal matrix containing the eigenvalue
dependence.

The form of the C matrix has the very useful property that its inverse is equal to
its Hermitian adjoint (transpose plus complex conjugation) C−1 = C† because the
eigenvectors are orthogonal and normalized. Multiplying each side by the inverse
matrix for the special case of z = 0 (which is the known incident wave function)
yields:

C−1ψ(z = 0) = C−1Cα = α (6.29)

α = C−1ψ(z = 0) = C†ψ(z = 0) (6.30)

which determines the weighting coefficients αj . Then the Fourier coefficients of
the wave function ψG(z) may be calculated at any depth in the specimen from the
eigenvalues, eigenvectors, and weighting coefficients. This result can be elegantly
summarized as a scattering matrix S (Sturkey [478]):

ψ(z) = C[exp(2πiγj )]C−1ψ(z = 0) = Sψ(z = 0) (6.31)

S = C[exp(2πiγj )]C−1 (6.32)

The wave function at the exit surface of the specimen is then calculated by
inserting these weighting coefficients αj (Eq. 6.30) into Eq. 6.26 to obtain the set
of ψG values at depth z. The slowly varying portion of the exit wave (similar to the
multislice result), dropping the rapidly oscillating portion exp(2πik0 · r), is then
given by an inverse Fourier transform (a single FFT) in two dimensions on Eq. 6.23;

ψ(x, y, z) = FT −1
xy

[
∑

G

ψG exp(2πiGzz)

]

(6.33)

where FT −1
xy is a 2D inverse (fast) Fourier transform over (Gx,Gy).

6.1.5 Bloch Wave Eigenvalue Summary

The steps in a Bloch wave eigenvalue calculation are summarized in algorithmic
form in Table 6.1.
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Table 6.1 Steps in the Bloch wave eigenvalue calculation of the wave function at the exit surface
of the specimen

Step 1 Calculate the Fourier coefficients of the atomic potential VG from Eq. 6.9 up to some
maximum |G|

Step 2 Solve for the eigenvalues (proportional to γj ) and eigenvectors (CG), both in Eq. 6.20

Step 3 Find the weighting coefficients αj to match the incident wave function at z = 0
(typically a plane wave for CTEM, or a focused probe for STEM) as in Eq. 6.30

Step 4 Calculate the electron wave function at the exit surface of the specimen (Eqs. 6.28
and 6.33)

The remaining steps to add the effects of the objective lens in CTEM (imaging) or STEM (probe
forming) are similar to other approaches (not given here)

Fig. 6.2 Scaling of CPU time in the Bloch wave eigenvalue method with the number of beams
N compared to the FFT multislice method (labeled MS) for the 100 projection of aluminum.
Two forms of FFT multislice are shown, one using a GPU and one run entirely on a single host
CPU (fftw). Two specimens were tested, silicon (nonsymmetric) and aluminum (symmetric). Two
different thickness are shown for the FFT multislice times (100 and 500 Å). The measured CPU
time has an error that is some small fraction of a second

6.1.6 Relative Performance

The scaling of computer (CPU) time of the Bloch wave method is compared to
the multislice method (discussed in later sections) in Fig. 6.2 for two different
specimens (100 aluminum and 100 silicon). The CPU time is for the transmission
of a single plane wave through the indicated specimen (i.e., part of a simple BF-
CTEM calculation). The 100 projection of aluminum is centro-symmetric and
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the Bloch wave calculation took advantage of the real (not complex) matrix to
be more efficient (about a factor of two) whereas the multislice calculation was
a general complex valued calculation. The calculations were carried out on the
same inexpensive desktop computer (using a single CPU or thread) using the
same operating system and compiler with similar compiler options. The Bloch
wave calculation used the Eigen C++ linear algebra library (eigen.tuxfamily.
org) to perform the eigenvalue calculation and the multislice calculation used the
FFTW [149] software package. Also shown is a multislice calculation using a GPU
(graphical processor unit with nearly 3000 small processors) and its parallel FFT.
All data was kept on the GPU (without transfer back to the host) as much as possible.
The GPU calculation by definition uses many GPU processors and requires its
own compiler; however, it was run on the same host computer as the other two
calculations for comparison (CPU time refers to elapsed time on the host not total
processor time on the GPU).

All of the programs could probably be improved a little in terms of efficiency
so the absolute time is not so important but it is reasonable to compare the relative
performance. The Bloch wave method is the same time for all thickness but the
multislice method scales linearly with thickness so two different specimen thickness
are shown. Having all thickness available from a single Bloch wave calculation can
be an advantage or a disadvantage (all thickness are calculated whether needed or
not). The number of beams for the multislice method is taken to be the number
of Fourier components in a single two-dimensional slice after removing aliasing.
There is an argument for counting each slice as a different beam (not done here)
in which case the two curves for the multislice method would likely come together
and move to a larger N . The GPU calculation has more initialization overhead so
does not have a big advantage for very small calculations (flat portion of the curve
for small N ), but does produce a significant reduction in calculation time for large
problems.

The Bloch wave CPU time grows very fast as the number of beams is increased
which is a significant problem. Generally speaking, both methods require a similar
number of beams and high resolution of nontrivial specimens requires many beams,
so the multislice method has a clear advantage except for some simple cases
requiring only a small number of beams. The memory storage requirements scale
as N2 for a Bloch wave calculation and N for a multislice calculation which is also
a significant advantage of the multislice approach for large N . Third party software
does exist for the eigenvalue calculations on a GPU, but this has not been tested here.

6.2 The Wave Equation for Fast Electrons

In principle the full time dependent Schrödinger equation could be used to solve
for the time dependent electron wave function at all positions in the specimen
or microscope column (in three dimensions) at each point in time. The initial
wave function is a Gaussian wave packet that would propagate through the crystal.

eigen.tuxfamily.org
eigen.tuxfamily.org
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The time evolution could in principle be traced using something like the Crank–
Nicholson numerical method (for example, see Press et al. [406]). However this
approach is prohibitively expensive in both computer memory and computer time.
The wavelength of a 200 keV electron is λ = 0.025 Å. A straightforward numerical
sampling of this wavelength would require of order 10 points per wavelength.
To sample a small specimen in a cube of 100 Å per side would require about
(100/0.0025)3 or 6.4 × 1013 points. Even in single precision (four bytes per value)
this would require 2.6 × 105 Gbytes of memory, which is clearly not possible in the
near future. Clearly some other approach must be found. The Bloch wave method
solves this problem by expanding in a small basis set of plane waves so real space
sampling is not really used. However there is still a finite sample in reciprocal space.

An alternative approach described below will use the time independent
Schrödinger equation mainly for mathematical simplicity. This section will further
approximate the Schrödinger for fast electrons and later sections will discuss
numerical solutions with the goal of reducing the computer memory and time
requirements.

The Schrödinger equation for the full wave function ψf (x, y, z) as a function
of three spatial coordinates (x, y, z) in an electrostatic potential V (x, y, z) of the
specimen is:

[

− h̄2

2m
∇2 − eV (x, y, z)

]

ψf (x, y, z) = Eψf (x, y, z) (6.34)

where h̄ = h/2π is Planck’s constant divided by 2π , m = γm0 is the relativistic
mass of the electron, e = |e| is the magnitude of the charge of the electron, E is
the kinetic energy of the electron, and −eV is the potential energy of the electron.
In an electron microscope the energy of the incident electrons (60–1000 keV) is
much greater than the additional energy they gain (or lose) inside the specimen
eV (x, y, z). The electron motion will be predominately in the forward z direction
(i.e., along the optic axis of the microscope) and the specimen will be a relatively
minor perturbation on the electron’s motion. It is useful to separate the large velocity
in the z direction from other small effects due to the specimen. First write the full
wave function ψf (x, y, z) as a product of two factors, one of which is a rapidly
varying plane wave traveling in the z direction, exp(2πiz/λ) and the other factor
ψ(x, y, z) is the remaining portion of the wave function that varies slowly with
position z:

ψf (x, y, z) = ψ(x, y, z) exp(2πiz/λ) (6.35)

where λ is the electron wavelength. This step is just a simple mathematical operation
of factoring out exp(2πiz/λ) (which is treated analytically) from the full wave
function. The remaining portion is slowly varying and may have a larger (numerical)
step size for ease of calculation. It is tempting to identify the phase in the exponent
as proportional to the electron wave number in the z direction (kz). However the
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squared magnitude of the total wave vector is k2
x + k2

y + k2
z = 1/λ2 so this is not

strictly true once the electron scatters out of a pure plane wave and kx and ky are
nonzero. Only elastic processes will be considered so the total kinetic energy of the
electron is:

E = h2

2mλ2 (6.36)

To use Eq. 6.35 in Eq. 6.34 requires the calculation of the following derivatives:

∇2ψf (x, y, z) =
[

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

]
ψf (x, y, z)

=
[
∇2

xy + ∂2

∂z2

]
ψf (x, y, z)

= exp(2πiz/λ)∇2
xyψ(x, y, z) + ∂2

∂z2 [ψ(x, y, z) exp(2πiz/λ)] (6.37)

where ∇2
xy is the sum of second derivatives with respect to x and y only. Now

concentrate on the derivative with respect to z. The first derivative is:

∂

∂z
[ψ exp(2πiz/λ)] = exp(2πiz/λ)

[
∂ψ

∂z
+ 2πi

λ
ψ

]
(6.38)

and the second derivative is:

∂2

∂z2 [ψ exp(2πiz/λ)] = exp(2πiz/λ)

[
∂2ψ

∂z2 + 4πi

λ

∂ψ

∂z
+
(

2πi

λ

)2

ψ

]

= exp(2πiz/λ)

[
∂2ψ

∂z2 + 4πi

λ

∂ψ

∂z

]
− 4π2

λ2 ψf (6.39)

Now substitute Eq. 6.39 into Eq. 6.34. The last term on the right-hand side of
Eq. 6.39 cancels the right-hand side of Eq. 6.34 given the value for E in Eq. 6.36.
Dropping the common factor of exp(2πiz/λ) leaves:

− h̄2

2m

[
∇2

xy + ∂2

∂z2 + 4πi

λ

∂

∂z
+ 2meV (x, y, z)

h̄2

]
ψ(x, y, z) = 0 (6.40)

The motion of the high energy electrons is predominately in the forward z direction
meaning that ψ changes slowly with z and λ is very small. Therefore:

∣∣∣∣
∂2ψ

∂z2

∣∣∣∣ <<

∣∣∣∣
4π

λ

∂ψ

∂z

∣∣∣∣ (6.41)
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so Eq. 6.40 may be approximated as:

[
∇2

xy + 4πi

λ

∂

∂z
+ 2meV (x, y, z)

h̄2

]
ψ(x, y, z) = 0 (6.42)

Ignoring the term containing the second derivative with respect to z is referred
to as the “high energy approximation” and sometimes interpreted as ignoring the
backscattered electrons (appropriate for high energy electrons, Howie and Basinski
[218], Lynch and Moodie [324]). However, it is probably more accurate to refer
to Eq. 6.42 as the paraxial approximation to the Schrödinger equation. Including
the second derivative term does not automatically include backscattered electrons
because some initial conditions may further prohibit the backscattered electrons.
Lewis et al. [311] have further considered the effect of neglecting the second order
derivative term. Bird [36] has concluded that dropping the second order derivative
(with respect to z) produces an error of about one percent in the position of the FOLZ
(first order Laue zone) ring (the error decreases with increasing beam voltage). The
importance of the second order term is approximately investigated in Sect. 6.11.2.

The Schrödinger equation (Eq. 6.34) for fast electrons traveling in the z direction
may be written as a first order differential equation in z as:

∂ψ(x, y, z)

∂z
=
[

iλ

4π
∇2

xy + 2meiλ

4πh̄2 V (x, y, z)

]
ψ(x, y, z)

=
[

iλ

4π
∇2

xy + iσeV (x, y, z)

]
ψ(x, y, z) (6.43)

where ψ(x, y, z) is defined in Eq. 6.35, λ is the wavelength of the incident electrons,
and σe = 2πmeλ/h2 is the interaction parameter (Eq. 5.6). An identical equation
would result if the exponent in Eq. 6.35 were replaced with (2πz/λ−iEt/h̄) (where
t is time) and the time dependent Schrödinger equation were used.

6.3 A Bloch Wave Differential Equation Solution

If the specimen is periodic (i.e., crystalline), then the specimen potential can be
expanded in a three-dimensional Fourier series as:

V (x, y, z) = V (r) =
∑

G

VG exp[2πiG · r] (6.44)

where the set of vectors G = (Gx,Gy,Gz) are typically the reciprocal lattice
vectors of the specimen. Next expand the electron wave function in Bloch waves
with the same crystal periodicity:
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ψ(x, y, z) = ψ(r) =
∑

G

φG(z) exp[2πiG · r] (6.45)

where the coefficients φG vary weakly with depth in the crystal z. Substituting
Eqs. 6.44 and 6.45 into the Schrödinger wave equation for fast electrons (Eq. 6.43)
yields:

∑

G

(
∂φG

∂z
+ 2πiGzφG

)
exp[2πiG · r]

= iλ

4π

∑

G

(−4π2G2
x − 4π2G2

y)φG exp[2πiG · r]

+ iσe

∑

G

[
∑

G′
VG−G′φG′

]

exp[2πiG · r] (6.46)

Equating coefficients of exp[2πiG · r] yields:

∂φG(z)

∂z
= −πi(2Gz + λG2

x + λG2
y)φG(z) + iσe

∑

G′
VG−G′φG′(z)

= 2πisGφG(z) + iσe

∑

G′
VG−G′φG′(z) (6.47)

This set of first order differential equation is known as the Howie–Whelan [219]
equations. If there are N Fourier coefficients in Eqs. 6.44 and 6.45, then there are N

coupled first order equations. The excitation error, sG = Gz + 0.5λ(G2
x + G2

y) for
the reflection G is illustrated in Fig. 6.3 for the case where Gz = 0. The incident
wave vector kz is along the positive z direction. Only elastic scattering is considered
here so the scattered wave vector ks must be the same length as the incident wave
vector. This means that the end of the scattered wave vector must lie on the Ewald
sphere centered at the beginning of the incident wave vector. The distance between
the end of the scattered wave vector and the nearest reciprocal lattice point is labeled
as sG.

The Howie–Whelan equations (6.47) can also be written as a matrix equation
for a column vector of N components φG and a matrix of N2 components VG−G′ .
A general matrix multiplication on the right-hand side would scale as N2 for
computer time. Calculating VG in three dimensions with a thousand or more beams
is itself a formidable task. In the CTEM all of the initial φG components (at z = 0)
would be zero except for a single plane wave in the z direction. This set of equations
can be solved using standard numerical differential equations methods such as
Runge–Kutta methods (see for example Press et al. [406]) to advance the vector
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Fig. 6.3 Scattering geometry in reciprocal space. The incident electron is traveling in the positive
z direction and is scattered through an angle α. The reciprocal lattice points of the specimen are
shown as solid dots. Elastic scattering requires that the incident wave vector kz and the scattered
wave vector ks both lie on the Ewald sphere. s is the extinction error for this scattering angle. In
the small angle approximation |q| ∼ α/λ and |s| = |q| sin(α/2) ∼ 0.5α2/λ

of φG components for each small step Δz. There are several different Bloch wave
formulations of the dynamical scattering problem. This is only one specific example
but does illustrate some of the general features of a Bloch wave or reciprocal
space solution. The Howie–Whelan equations are conceptually very similar to the
multislice equation taken up in the next section. The first term on the right-hand
side of Eq. 6.47 is similar to the propagator function and the second term is similar
to the transmission function in the multislice method. The main difference is that the
Howie–Whelan equations are stated completely in reciprocal space. Other, general
analytical Bloch wave solutions are discussed at length in Hirsch et al. [208] and
Reimer [414].

Watanabe et al. [527, 528] have recently proposed an alternate approach to the
solution of the Howie–Whelan equations. They find that a direct integration of
the equations (with the appropriate boundary conditions at the entrance and exit
surface of the crystal) yields a method that has about the same accuracy as the
multislice solution but is in between Bethe’s eigenvalue solution and the multislice
solution in efficiency (i.e., computer time).
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6.4 The Multislice Solution

6.4.1 A Formal Operator Solution

The wave equation for fast electrons (Eq. 6.43) can be written in operator form as:

∂ψ(x, y, z)

∂z
= [A + B]ψ(x, y, z) (6.48)

A = iλ

4π
∇2

xy

B = iσeV (x, y, z)

where A and B are non-commuting operators. This equation has a formal operator
solution of:

ψ(x, y, z) = exp

[∫ z

0
[A(z′) + B(z′)]dz′

]
ψ(x, y, 0) (6.49)

This can be verified by formal differentiation. Offsetting the initial value to z and
integrating from z to z + Δz yields:

ψ(x, y, z + Δz) =

exp

[∫ z+Δz

z

(
iλ

4π
∇2

xy + iσeV (x, y, z′)
)

dz′
]

ψ(x, y, z) (6.50)

Δz will become a small slice of the specimen and this solution may be further
simplified as:

ψ(x, y, z + Δz) = exp

[
iλ

4π
Δz∇2

xy + iσevΔz(x, y, z)

]
ψ(x, y, z) (6.51)

where vΔz(x, y, z) is the projected potential of the specimen between z and z +Δz.

vΔz(x, y, z) =
∫ z+Δz

z

V (x, y, z′)dz′ (6.52)

The appearance of the operator ∇2
xy in the exponent complicates the solution

somewhat because the exp(· · · ) factor must also be regarded as an operator. If A

and B are non-commuting operators or matrices and ε is a small real number, then:

exp(Aε + Bε) = 1 + (A + B)ε + 1

2! (A + B)2ε2 + · · ·

= 1+(A + B)ε+ 1

2! (A
2 + AB + BA + B2)ε2+ · · · (6.53)
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If A and B were simple scalar variables, then this expression could be easily
factored; however, the most common factorizations do not yield the expected results
if A and B do not commute.

exp(Aε) exp(Bε) =
[

1 + Aε + 1

2!A
2ε2 + · · ·

] [
1 + Bε + 1

2!B
2ε2 + · · ·

]

= 1 + (A + B)ε + 1

2! (A
2 + 2AB + B2)ε2 + · · · (6.54)

and:

exp(Bε) exp(Aε) =
[

1 + Bε + 1

2!B
2ε2 + · · ·

] [
1 + Aε + 1

2!A
2ε2 + · · ·

]

= 1 + (B + A)ε + 1

2! (B
2 + 2BA + A2)ε2 + · · · (6.55)

By comparison Eq. 6.53 may be factored to lowest order in either of two ways:

exp(Aε + Bε) = exp(Aε) exp(Bε) + 1

2
[B,A]ε2 + O(ε3) (6.56)

or

exp(Aε + Bε) = exp(Bε) exp(Aε) + 1

2
[A,B]ε2 + O(ε3) (6.57)

where [B,A] = BA − AB is the commutator of operators (or matrices) B and A.
(A more accurate answer can be obtained simply by averaging Eqs. 6.56 and 6.57.)
This result is referred to as the Zassenhaus theorem (Goodman and Moodie [162]).
Feynman [132], Weiss and Maradudin [531], and Wilcox [533] have given a more
detailed discussion of exponentiation of operators.

The traditional form of the multislice solution uses one of Eqs. 6.56 and 6.57 in
Eq. 6.51.

ψ(x, y, z + Δz) = exp

(
iλΔz

4π
∇2

xy

)
exp [iσevΔz(x, y, z)] ψ(x, y, z) + O(Δz2)

= exp

(
iλΔz

4π
∇2

xy

)
t (x, y, z)ψ(x, y, z) + O(Δz2) (6.58)

where t (x, y, z) is the transmission function for the portion of the specimen between
z and z + Δz (compare to Eq. 5.7).

t (x, y, z) = exp

[
iσe

∫ z+Δz

z

V (x, y, z′)dz′
]

(6.59)
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The remaining factor of exp(· · · ) is a little more difficult to interpret. First form the
two-dimensional Fourier transform of the right-hand side of Eq. 6.58:

FT

[
exp

(
iλΔz

4π
∇2

xy

)
(tψ)

]

=
∫ [

exp

(
iλΔz

4π
∇2

xy

)
(tψ)

]
exp[2πi(kxx + kyy)]dxdy (6.60)

The derivatives with respect to x and y commute so the exponential operator may
be split into two factors (one with x and one with y) without further error.

FT

[
exp

(
iλΔz

4π
∇2

xy

)
(tψ)

]

=
∫ [

exp

(
iλΔz

4π

∂2

∂x2

)
exp

(
iλΔz

4π

∂2

∂y2

)
(tψ)

]

× exp[2πi(kxx + kyy)]dxdy (6.61)

Each exponential operator may be expanded in a power series as:

exp

(
iλΔz

4π

∂2

∂x2

)
=

∞∑

n=0

1

n!
(

iλΔz

4π

∂2

∂x2

)n

exp

(
iλΔz

4π

∂2

∂y2

)
=

∞∑

n=0

1

n!
(

iλΔz

4π

∂2

∂y2

)n

(6.62)

Inserting the power series expansions for the exponentials in Eq. 6.61 and repeatedly
integrating each term by parts (with the assumption that tψ vanishes at infinity or
obeys periodic boundary conditions) yields:

FT

[
exp

(
iλΔz

4π
∇2

xy

)
(tψ)

]
=

∞∑

n=0

1

n!
(
−iπλΔzk2

x

)n

×
∞∑

n=0

1

n!
(
−iπλΔzk2

y

)n

FT [(tψ)]

= exp
[
−iπλΔz(k2

x + k2
y)
]
FT [(tψ)]

= P(k,Δz)FT [tψ] (6.63)

where k2 = (k2
x + k2

y) and P(k,Δz) is the propagator function. A multiplication
in Fourier space converts to a convolution in real space so the operator may be
interpreted as:
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exp

(
iλΔz

4π
∇2

xy

)
= p(x, y,Δz)⊗ (6.64)

where ⊗ is a two-dimensional convolution (in x and y) and p(x, y,Δz) is the
propagator function in real space for a distance Δz:

P(k,Δz) = exp
(
−iπλk2Δz

)

p(x, y,Δz) = FT −1 [P(k,Δz)] = 1

iλΔz
exp

[
iπ

λΔz
(x2 + y2)

]
(6.65)

Combining Eqs. 6.63 and 6.58 yields:

ψ(x, y, z + Δz) = p(x, y,Δz) ⊗ [t (x, y, z)ψ(x, y, z)] + O(Δz2) (6.66)

If the slices in the specimen are labeled n = 0, 1, 2, · · · , then the depth in the
specimen is zn (zn ∼ nΔz if all slices were the same thickness). The wave function
at the top of each slice is labeled ψn(x, y) and the propagator and transmission
functions for each slice are labeled as pn(x, y,Δzn) and tn(x, y), respectively. The
multislice equation (6.66) can be written in compact form as:

ψn+1(x, y) = pn(x, y,Δzn) ⊗ [tn(x, y)ψn(x, y)] + O(Δz2) (6.67)

If the other identity (Eqs. 6.56 and 6.57) is used, then another equally accurate
expression results.

ψn+1(x, y) = tn(x, y) [pn(x, y,Δzn) ⊗ ψn(x, y)] + O(Δz2) (6.68)

The initial wave function ψ0(x, y) is a plane wave in the CTEM and the probe wave
function in the STEM.

The last term in Eqs. 6.67 and 6.68 indicates the order of magnitude of the error
caused by the approximation used to get the remaining terms in the equations and
is called the error term. The error term should not be used in the actual calculation
but is for informational purposes only. The error associated with one step of the
multislice equations (6.66, 6.67, and 6.68) is of order Δz2. This error is referred to as
the local error. If the specimen is divided into Ns slices, then typically Ns ∝ 1/Δz.
If the multislice equation is applied Ns times to advance the wave function all of
the way through the specimen, then the error term of the final result is reduced by
approximately one order. The error of the final result is therefore of order Δz. The
final error is referred to as the global error.
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6.4.2 A Finite Difference Solution

The traditional numerical analysis approach to solving a differential equation given
an initial value is to Taylor expand the dependent variable (ψ in this case) in powers
of Δz and approximate the derivatives by their finite difference approximations.
Expanding ψ(x, y, z) about the point z (and temporarily dropping explicit reference
to x and y in ψ for simplicity) yields:

ψ(z + Δz) = ψ(z) + Δz
∂ψ(z)

∂z
+ 1

2!Δz2 ∂2ψ(z)

∂z2 + · · · (6.69)

Substituting the first derivative from Eq. 6.43 yields:

ψ(z + Δz) = ψ(z) + Δz

[
iλ

4π
∇2

xy + iσeV (x, y, z)

]
ψ(z) + O(Δz2)

=
{

1 + Δz

[
iλ

4π
∇2

xy + iσeV (x, y, z)

]}
ψ(z) + O(Δz2) (6.70)

The Taylor series expansion for exp(x) with small x is:

exp(x) = 1 + x + 1

2!x
2 + 1

3!x
3 + · · · (6.71)

By comparison to Eqs. 6.70 and 6.71 may be written to lowest order (with the x, y

dependence reinstated) as:

ψ(x, y, z + Δz) = exp

[
Δz

iλ

4π
∇2

xy + iσeΔzV (x, y, z)

]
ψ(x, y, z)

+O(Δz2) (6.72)

Keeping the leading factor as exp(· · · ) where the exponent is predominately
imaginary tends to keep the total integrated intensity constant.

∫
|ψ(x, y, z + Δz)|2dxdy =

∫
|ψ(x, y, z)|2dxdy = constant (6.73)

This is physically relevant because elastic scattering should be unitary. Without
this constraint the result is essentially Euler’s method (for example see Press et al.
[406]) which is known to require an excessively small step size (Δz) to be stable.
Furthermore to this level of accuracy the term containing the specimen potential
may be written as:

V (x, y, z)Δz =
∫ z+Δz

z

V (x, y, z′)dz′ + O(Δz2)

= vΔz(x, y, z) + O(Δz2) (6.74)
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where vΔz(x, y, z) is the projected potential of the specimen between z and z +Δz.
Therefore Eq. 6.72 may be written as:

ψ(x, y, z + Δz) = exp

[
Δz

iλ

4π
∇2

xy + iσevΔz(x, y, z)

]
ψ(x, y, z)

+O(Δz2) (6.75)

This is just the previous result (Eq. 6.51) and the rest of the derivation follows that
of Sect. 6.4.1.

6.4.3 Free Space Propagation

In the special limiting case in which the specimen potential vanishes the formal
multislice solution (Eq. 6.51) takes the simpler form of:

ψ(x, y, z + Δz) = exp

[
iλ

4π
Δz∇2

xy

]
ψ(x, y, z) (6.76)

which can be written in terms of the propagator function without introducing any
further approximations (or errors) as:

ψ(x, y, z + Δz) = p(x, y,Δz) ⊗ ψ(x, y, z) (6.77)

Closer inspection of the error term in the full multislice solution (Eq. 6.67, or 6.68)
reveals that it should be written as O(Δz2vΔz) where vΔz is the projected atomic
potential of the specimen and Δz is the slice thickness. This means that for a given
slice thickness the accuracy of the multislice solution increases as the specimen
potential gets smaller. The multislice solution should be more accurate for light
atoms with low atomic numbers and less accurate for heavy atoms with high atomic
numbers.

It is interesting to observe that the two components of the multislice solution
(the transmission function and the propagation function) are nearly exact when used
separately. The phase grating approximation (Sect. 5.1) of the transmission function
and the propagation function are individually more accurate than when they are
combined into the multislice solution (van Dyck [506]). The main error in the
multislice solution is due to how these operations are combined.

6.5 Multislice Interpretation

If the initial value of the wave function ψ(x, y, z = 0) is given in an x, y plane at the
entrance face of the specimen (i.e., unity for the CTEM and the probe wave function
for the STEM), then the electron wave function can be calculated at any depth
z inside the specimen given a description of the potential inside the specimen by
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Fig. 6.4 Multislice decomposition of a thick specimen. (a) Original thick specimen, (b) the
specimen divided into thin slices, (c) each slice is treated as a transmission step (solid line) followed
by a propagator (vacuum between slices)

z

z+ z
(x,y)

(x', y')(x'',  y'' ) (x, y)
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z
R

transmit

transmit

propagate

Ñ

Fig. 6.5 Physical optics interpretation of the multislice propagator. The wave function in an x, y

plane at z propagates to the x, y plane at z+Δz. Each point in the wavefront at z emits a spherically
outgoing wave. All of these waves combine at each point in the x, y plane at z + Δz

repeated application of Eq. 6.66. The specimen is first divided into many thin slices
as in Fig. 6.4. At each slice the electron wave function experiences a phase shift
due to the projected atomic potential of all atoms in the slice and then is propagated
along z for the thickness of the slice. In general each slice is independent of all other
slices, so both the slice thickness Δz and transmission function t (x, y, z) may vary
from one slice to another.

The original derivation of Cowley and Moodie [78] was done from a physical
optics viewpoint. The transmission function t (x, y, z) can be associated with the
phase grating approximation of a thin specimen for the layer of the specimen
between z and z + Δz as in Sect. 5.1. The propagator function p(x, y,Δz) can
be associated with the Fresnel (near zone) diffraction over a distance Δz.

Huygens’ principle (of classical optics) states that every point of a wave front
gives rise to an outgoing spherical wave. These outgoing spherical waves propagate
to the next position of the wavefront and interfere with one another. The wave
function in an x, y plane at z + Δz is the interference of all of these spherically
outgoing waves that originated in an x, y plane at z as illustrated in Fig. 6.5
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The propagation of a wavefront as described by the Huygens’ principle may be
calculated using the Fresnel–Kirchhoff diffraction integral (for example, see Born
and Wolf [42] section 8.3.2).

ψ(x, y, z + Δz) = 1

2iλ

∫
ψ(x′, y′, z)exp(2πiR/λ)

R
(1 + cos θ)dx′dy′ (6.78)

where θ is the angle between the plane of the initial wavefront and the direction of
the outgoing spherical wave at point (x′, y′). R is the total distance the outgoing
spherical wave must travel to point (x, y) on the next wavefront.

R =
√

(x − x′)2 + (y − y′)2 + Δz2 (6.79)

The maximum scattering angle for high energy electrons is only about 100–
200 mrad. The angle θ is very close to zero for high energy electrons so Eq. 6.78
may then be written as:

ψ(x, y,Δz) = 1

iλ

∫
ψ(x′, y′, z)exp(2πiR/λ)

R
dx′dy′ (6.80)

Small angle scattering also means that the lateral distances (|x − x′| and |y − y′|)
are also small compared to Δz. For example, if the slice thickness is Δz ∼3 Å,
then |x − x′| ∼0.3 Å at a scattering angle of 100 mrad. The distance R may then be
approximated as:

R = Δz

√
1 + (x − x′)2/Δz2 + (y − y′)2/Δz2

∼ Δz
[
1 + 0.5(x − x′)2/Δz2 + 0.5(y − y′)2/Δz2 + · · ·

]
(6.81)

Substituting Eq. 6.81 into Eq. 6.80 and keeping only lowest powers of (x − x′) and
(y − y′) yields:

ψ(x, y,Δz) = 1

iλ

exp(2πiΔz/λ)

Δz

∫
ψ(x′, y′, z)

× exp

{
iπ

λΔz

[
(x − x′)2 + (y − y′)2

]}
dx′dy′ (6.82)

The right-hand side of this expression is just the convolution of ψ with the
propagator function (Eq. 6.65).

ψ(x, y,Δz) = exp(2πiΔz/λ) [ψ(x, y, z) ⊗ p(x, y,Δz)] (6.83)
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where the propagator function is:

p(x, y,Δz) = 1

iλΔz
exp

[
iπ

λΔz
(x2 + y2)

]
(6.84)

The leading exponential factor in Eq. 6.82 is just the forward propagation of the
plane wave and is part of the full wave function (as in the Fresnel–Kirchhoff
diffraction integral, Eq. 6.78) but not part of the slowly varying part of the wave
function (see Eq. 6.35) as used in the multislice derivation. Expression 6.82 is then
identical to the convolution with the propagator derived in the multislice method
(Eq. 6.66). The multislice propagator function can be interpreted simply as the
Fresnel diffraction over a distance Δz. Also note that this is equivalent to a defocus
of Δf = Δz.

6.6 The Multislice Method and FFTs

When implemented numerically in the computer the wave function ψ(x, y) will be
sampled as discrete points in x and y. The solution of Eqs. 6.67 and 6.68 will require
computer storage for only a small number of two-dimensional arrays of ψ(x, y) at
any one time because only the values at two positions of z are needed at the same
time. Furthermore the convolution can be efficiently calculated using the fast Fourier
Transform as first discussed by Ishizuka and Uyeda [236] and Bursill and Wilson
[51]. The Fourier convolution theorem says that:

f (x, y) ⊗ h(x, y) = FT −1 [F(kx, ky)H(kx, ky)
]

(6.85)

F(kx, ky) = FT [f (x, y)]

H(kx, ky) = FT [h(x, y)]

where FT [] is a two-dimensional Fourier transform. Equations 6.67 and 6.68 can
be rewritten using Fourier transforms as:

ψn+1(x, y) = FT −1 {Pn(kx, ky,Δzn)FT [tn(x, y)ψn(x, y)]
}

+O(Δz2) (6.86)

and

ψn+1(x, y) = tn(x, y)FT −1 {Pn(kx, ky,Δzn)FT [ψn(x, y)]
}

+O(Δz2) (6.87)

Equation 6.86 will turn out to be the best form to eliminate aliasing (see Sect. 6.8).
If the wave function is sampled with Nx points in the x direction and Ny points in
the y directions, then there are N = NxNy Fourier coefficients all together. Using
the fast Fourier transform (Chap. 4) means that the total computation time then
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scales roughly as N log2 N instead of N2 as in a direct matrix solution (or the direct
convolution in Eqs. 6.67 and 6.68). In a matrix algebra description the transmission
function is diagonal in real space and the propagator is diagonal in reciprocal space.
The FFT is a convenient and fast way to convert back and forth between real
and reciprocal space. The combined efficiency of small memory requirements and
fast computation makes the multislice method preferable over a direct matrix or
eigenvalue solution.

The multislice solution is formally equivalent to a solution of the Howie–Whelan
equation (6.47) if the slice thickness Δz is small enough. Both are derived from the
wave equation for fast electron (6.43) and both neglect the second derivative of ψ

with respect to z (Eq. 6.41). The principle difference is the relative efficiency of the
two solutions. When the multislice solution is implemented using the fast Fourier
transform (FFT) it can be dramatically faster (i.e., less computer time) than a Bloch
wave solution.

6.7 Slicing the Specimen

Generating a description of the specimen in a form that can be used in a multislice
program can be the most difficult part of simulating an image (often involving many
long hours staring at the crystallographic data for the specimen at hand). Overall the
specimen needs to be described as a sequence of layers (x, y planes) and the spacing
between each layer (thickness of the layer along z, the optic axis of the electron
microscope). Deciding on a strategy (and input format) for listing the specimen
parameters is part of designing the program and part of actually using the program
once it is written. The FFT (fast Fourier transform) has an enormous advantage
in computational efficiency (i.e., computer time) and is almost always used in a
multislice program. The FFT is factorable into independent x and y components
(see Chap. 4). The easiest way to use the FFT is to describe the specimen as a
rectangular unit cell. Obviously not all specimens have a convenient rectangular
unit cell so this may require some work by the person using the multislice simulation
program. If the specimen naturally has a rectangular unit cell it is easy to simulate it
if viewed along one of the major crystal axis. If the specimen is not viewed along a
major crystal axis or is not naturally rectangular, it is necessary to redefine a larger
unit cell to get something that is rectangular. It is technically possible to define a
multidimensional Fourier transform with non-orthogonal coordinates (for example,
Dudgeon and Mersereau [103]); however, this is beyond the scope of this book (and
this author). It is generally easier to write one program and rearrange the specimen
coordinates than to write a new program for every possible specimen with different
symmetry. There is no general procedure for all specimens. Each specimen may
require a different approach to generate its multislice description.

The multislice method requires that the specimen be divided into a sequence of
thin rectangular slices. Each slice must be thin enough to be a weak phase object
and is in a plane perpendicular to the optic axis of the electron microscope (along z)
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Fig. 6.6 The standard multislice description of the specimen as many thin slices perpendicular to
the optic axis of the electron microscope (four slices shown). Each slice must be thin enough to be a
weak phase object and is typically one atomic layer of the specimen. The optic axis of the electron
microscope is in the positive z direction. Each slice should obey periodic boundary conditions in x

and y

as in Fig. 6.6. All of the atoms within z to z + Δz are compressed into a flat plane
or slice at z. When viewed along the optic axis each slice must be aligned with the
natural periodicity of the specimen. The edges of the slice (in the x, y plane) must
obey periodic boundary conditions (in x and y) in the plane of the slice. This is
a requirement for using the FFT and is identical to the requirements of the phase
grating calculation (Chap. 5). If the slices do not obey periodic boundary conditions
in the x and y direction, serious artifacts may be generated in the image due to the
so-called wrap-around error (see Chap. 4). The transmission function for each slice
should also be symmetrically bandwidth limited as in the phase grating calculation
(Fig. 5.10) even though the sample spacing may be different in each direction (x
and y).

The slices do not necessarily have to be periodic along the optic axis (the
z direction), although this is frequently the case. Many crystalline specimens of
interest are organized into layers of atoms. If the specimen is aligned such that
these layers are perpendicular to the electron beam direction, then it is usually
best to identify the slices with the atomic layers in the specimen. Many crystalline
specimens can be described as a repetitive sequence of a small number of identical
layers. For example, the (111) projection of silicon has a stacking sequence of
abcabc . . . with three repeating layers. Each layer can be used as one slice for
the multislice method. In this case it is more efficient to calculate the transmission
function for each of these three layers and store them in three arrays in computer
memory. A multislice simulation program would then just reuse each layer over
and over again without recalculation (to reduce the overall computer time required).
The opposite extreme would be a completely disordered structure with no obvious
repetitive structure along z. In this case there is no advantage to saving the
transmission function of each slice. The transmission function for each slice can
be calculated when needed and then discarded. This reduces the computer memory
requirements significantly and has little or no effect on the computer time. The total
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Fig. 6.7 The multislice error may be reduced by aligning atomic layers with the slice boundaries.
The potential for each atomic layer is relatively thin (Δza) and the vacuum space between the
slices is a free space propagation. The multislice slice thickness is Δzn

computer time will increase with the number of slices that must be calculated but
there is no advantage to saving the slices because they cannot be reused. These two
strategies (precalculating the slices and reusing them versus calculating each slices
as needed) may produce two different types of computer programs.

Aligning the natural atomic layers of the specimen with the slices can have
beneficial side effects in the accuracy of the multislice solution. Figure 6.7 illustrates
how this can occur. The atomic potential is strongly peaked near the atomic nucleus
and falls off quickly away from the nucleus (the potential is approximately a
screened 1/r dependence where r is the distance from the nucleus). The effective
range of the potential in the atoms in one layer can be smaller than the distance
between layers (see the rectangular box labeled “atoms” in Fig. 6.7). The potential
is identically zero in between the layers. The transmission in vacuum is nearly
exact but the multislice error occurs only over the thickness of the layer Δza . The
propagator may be cascaded as:

p(x, y,Δz) = p(x, y,Δz − Δza) ⊗ p(x, y,Δza) (6.88)

In effect the multislice equations are a transmission plus propagator over a distance
Δza followed by a propagation over a distance Δz − Δza . The effective multislice
error is of order Δza which can be significantly smaller than total slice thickness Δz.

Furthermore if there are an integer number of slices in one repeat distance
(along z) of the specimen then the multislice simulation can correctly reproduce
the upper layer lines (higher order Laue zones) in the scattering process (Goodman
and Moodie [162], Van Dyck [506]). If the specimen has a nonzero extent along
the beam direction (the z axis) then its reciprocal lattice will have a definite three-
dimensional structure. The simple case of a cubic unit cell is shown in Fig. 6.8.
The wave vector of the incident electron beam is shown as kz. The multislice
calculation considers only elastic scattering so the scattered electron wave vector
ks must lie on the Ewald sphere to keep the length (or energy) of the incident
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Fig. 6.8 The upper layer lines or higher order Laue zones (HOLZ). If the specimen is periodic in
three dimensions (crystalline) then the reciprocal lattice will have additional diffraction conditions
along the third dimension which can give rise to additional diffraction spots at high angle

and scattered electrons equal. The reciprocal lattice of the specimen (dark spots
in Fig. 6.8) represents the only allowed changes in electron wave vector that can
occur via elastic scattering in the specimen. Only the electron scattering angles
on the Ewald sphere that cross spots in the reciprocal lattice of the specimen are
allowed to contribute to the final transmitted electron wave function. The reciprocal
lattice sites with a nonzero offset along the kz direction are referred to as the higher
order Laue zones (HOLZ). Only the bottom layer is allowed in the thin specimen
calculations in Chap. 5 and is referred to as the zero order Laue zone (ZOLZ). The
first nonzero (along z) layer is referred to as the first order Laue zone (FOLZ), the
second layer is the second order Laue zone (SOLZ), etc. The ZOLZ gives rise to a
large region in the diffraction pattern near the origin. The HOLZ regions give rise to
rings at successively higher angles. If the slice thickness in the multislice calculation
matches the natural periodicity in the specimen (i.e., an integer number of slices in
the repeat length of the specimen), then the multislice simulation will reproduce
the higher order Laue zones. If the slice thickness does not match the specimen
periodicity, then beating can occur between the slice thickness and the specimen
periodicity to produce artifacts in the image. The slice thickness can produce an
artificial periodicity in the specimen if it does not match the natural periodicity
of the specimen. If the multislice slice thickness is much larger than the natural
periodicity of the specimen, then false HOLZ lines can be created at:

k =
√

2

Δzλ
(6.89)

where Δz is the multislice slice thickness, λ is the electron wavelength and α = λk

is the electron scattering angle. The slice thickness effectively takes the place of the
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normal crystal lattice spacing along z. An overly large slice thickness can produce
serious artifacts in a simulated image and should be avoided. Kilaas et al. [260] have
discussed methods of including the upper layers lines in more detail.

The standard multislice method (Eqs. 6.86 and 6.87) is only accurate to order
Δz. It is tempting to just let Δz get smaller and smaller to obtain more accuracy.
However there is a competing effect that limits the minimum value of the slice
thickness in most practical implementations. The standard multislice is frequently
stated in terms of the total projected atomic potential vz(x, y) of the specimen,
which is the integrated potential (along z) from minus infinity to plus infinity.
Typically the total projected atomic potential is equated with the projected atomic
potential for only the slice thickness:

vΔz(x, y) =
∫ z+Δz

z

V (x, y, z)dz ∼
∫ +∞

−∞
V (x, y, z)dz = vz(x, y) (6.90)

As long as the slice thickness is large compared to the effective range of the atomic
potential this approximation is valid. However if the slice thickness Δz is made
less than the range of the atomic potential (about 1 Å), then this approximation
is no longer valid. Therefore if the total projected atomic potential is used (as is
typical) the minimum slice thickness is about 1 Å, which sets a limit on the
maximum achievable accuracy of the multislice calculation. There is some question
if 1 Å is thin enough for heavy atoms, such as gold, at 100 keV, however, higher
voltage or lower atomic number should be all right (Watanabe [526]). The electron
wavelength is typically of order 0.03 Å, which is much smaller than the minimum
slice thickness. If the full wave function were used then the slice thickness would
have to be much smaller than the electron wavelength, and the multislice method
would not work at all. However, only the slowly varying part of the wave function
is calculated so a slice thickness of several Angstroms is acceptable.

6.8 Aliasing and Bandwidth

Each slice in the multislice method produces two operations on the wave function
(propagation and transmission). The first step is multiplication by the transmission
function in real space and the second step is a convolution with the propagator
function (a multiplication in reciprocal or Fourier space). Multiplication in real
space is equivalent to a convolution in reciprocal space. Using a discretely sampled
image for the wave function allows the use of the FFT with its computational
efficiency but the discrete sampling also creates some subtle problems with aliasing
(see Sect. 4.1) caused by multiplication by the transmission function in real space
(or any other nonlinear operation).
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In reciprocal space, multiplication of the wave function ψ(x, y) by the specimen
transmission function t (x, y) is:

FT [t (x, y)ψ(x, y)] = T (kx, ky) ⊗ Ψ (kx, ky)

=
∫

T (k′
x, k

′
y)Ψ (kx − k′

x, ky − k′
y)dk′

xdk′
y (6.91)

where T (kx, ky) is the Fourier transform of t (x, y) and Ψ (kx, ky) is the Fourier
transform of ψ(x, y). If each function is bandwidth limited to a maximum spatial
frequency of kmax (required when discretely sampled), then each function is only
nonzero within a circle whose radius is kmax. As shown earlier in Fig. 5.10 it is best
to symmetrically bandwidth limit each function as:

kmax = min

[
Nx

2a
,
Ny

2b

]
(6.92)

where the supercell size is a ×b in real space with Nx ×Ny pixels. A convolution is
equivalent to sliding one circle across the other as in Fig. 6.9. The result of the
convolution is a two-dimensional function whose value is the integration of the
overlap between the two circles and the distance between the circles is the spatial
frequency associated with this value. Multiplying two functions of bandwidth kmax
in real space produces a function with twice the original bandwidth (2kmax).

When the functions are discretely sampled the spectra of each function is
periodically repeated in both direction as shown in Fig. 6.10. Both the wave func-
tion Ψ (kx, ky) and the transmission function T (kx, ky) are repeated periodically
although only Ψ (kx, ky) is shown as being repeated to make the drawing easier to
understand. When a discretely sampled wave function and transmission function

Fig. 6.9 The convolution of two continuous bandwidth limited function Ψ and T in reciprocal
space (equivalent to multiplication in real space). When limited to a symmetrically maximum
frequency (or bandwidth) of kmax each function is only nonzero within a circle of radius kmax.
Each point in the convolution is a different offset of the two circles and the value is the integrated
intensity in the overlap region. The sequence (a), (b), (c) illustrate the process of sliding one disk
across the other to form the convolution
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Fig. 6.10 The convolution of two discretely sampled bandwidth limited functions (the wave
function Ψ and the transmission function T ) in reciprocal space (equivalent to multiplication in
real space). The bandwidth limit of each function appears as a circle

Fig. 6.11 The convolution of two discretely sampled bandwidth limited functions (the wave
function Ψ and the transmission function T ) in reciprocal space (equivalent to multiplication in
real space). The bandwidth limit of each function appears as a circle and is limited to 2/3 of its
maximum to eliminate aliasing

are convolved in reciprocal space, one function slides across the other and will
overlap the adjacent periodically repeated functions. The other repeated functions
improperly appear as very high spatial frequencies. It is equivalent to say that low
spatial frequencies are aliased as high spatial frequencies. This can produce rather
serious artifacts in the final simulation if not corrected.

The solution to this aliasing problem is to set the maximum spatial frequency
(or bandwidth) of both functions to be 2/3 of the maximum sampling frequency
(kmax) in the wave function (Self et al. [452]). This way one function no longer
overlaps the other when its offset reaches the maximum allowed spatial frequency
(Fig. 6.11). Frequencies greater than 2/3 still overlap more than one Ψ function so
the final result must be explicitly bandwidth limited again to (2/3)kmax. If there are
Nx × Ny pixels in the wave function and N = Nx = Ny , then there are a total
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of N2 possible Fourier coefficients. Limiting the bandwidth to 2/3 of its maximum
symmetrical value limits the number of Fourier coefficients to π [(2/3)(N/2)]2 =
πN2/9 = 0.35N2. Even though nearly two thirds of the Fourier coefficients must
be set to zero the overall benefit of the FFT is still worth the effort. A convenient way
of limiting both functions is to set both the specimen transmission function and the
propagator function to zero outside of (2/3)kmax. When the electron wave function
is multiplied by the transmission function (at each step or slice of the multislice
method) its bandwidth doubles and is then reduced to the required maximum by
convolution with the propagator function (multiplication in reciprocal space). This
requires using the form of the multislice method in which convolution with the
propagator function is performed after multiplication by the transmission function
(Eq. 6.67 and not Eq. 6.68).

Without the appropriate bandwidth limit the simulated image can have serious
artifacts and dramatically differ from the correct result. Reducing the effective
bandwidth can also reduce the convergence of the multislice method. Usually the
best recourse is to increase the number of pixels in one or both directions (Nx , Ny).

An alternate approach to eliminate aliasing was suggested by O’Keefe and Kilaas
[381]. The wave function can be limited to (1/2)kmax (before and after each slice)
and the transmission function limited to kmax to get a similar elimination of aliasing.

6.9 Interfaces and Defects

Crystal defects and interfaces pose a problem for image simulation. The FFT is
very efficient and produces a multislice calculation with an acceptable amount of
computer time, but requires that the specimen potential and electron wave function
be periodic in the xy plane (perpendicular to the optic axis of the microscope). The
specimen does not need to be periodic along the z or beam direction although if it is
not periodic along the beam it may require significantly more computer time.

An isolated point defect at a particular point in the specimen is obviously not
periodic. If the defect is simply placed in the super cell of the specimen then
the discrete nature of the sampled potential periodically reproduces an infinite
number of point defects with the periodicity of the super cell as shown in Fig. 6.12.
If the super cell dimensions a × b are too small, then the image from one defect
can interfere with the image from the periodically produced adjacent defects. The
solution to this problem is to use an artificially large unit cell. If the super cell
dimensions a × b are large, then the point defects become essentially isolated and
do not interfere. A good starting point is to keep the defects separated by about
25–30 Å. This method has been given the name periodic continuation and has been
discussed by Grinton and Cowley [173], MacLagan et al. [327], Fields and Cowley
[133], Anstis and Cockayne [19], Wilson and Spargo [535], and Matsuhata et al.
[335].

A similar problem occurs for crystal interfaces as shown in Fig. 6.13. Consider
an interface between material A on the left and material B on the right. The interface
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Fig. 6.12 Modeling a point defect (the small circle) in the center of the specimen of size a × b.
Periodic continuation of the image causes the defect to be repeated infinitely many times in
both directions. The unit cell dimension a × b should be increased so that adjacent (periodically
continued) defects do not interfere

Fig. 6.13 Modeling an
interface in the center of the
sampled area. The
wrap-around error causes an
extra interface to be created
due to the interaction of the
right-hand side and the
left-hand side of the image

between the two materials in the center can be correctly modeled; however, the so-
called wrap-around effect (or periodic continuation similar to Fig. 6.12) causes an
additional interface to be produced when the right-hand side of material B wraps
around to touch material A on the right for a second time. In this problem the super
cell should again be made large enough so that these two interfaces do not interfere
with one another. Usually the edges of the image (with the second unintended
interface) can just be ignored, and the interface in the center will contain the correct
simulation (assuming that the super cell size is large enough). Alternately, the
presence of two interfaces can be explicitly acknowledged by sandwiching a narrow
region of material B in the center of two regions of material A on the left and right.
Then two interfaces are simulated. Note that the two regions of material A must
match in orientation when wrapped around.
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6.10 Multislice Implementation

The multislice method is particularly well suited for numerical implementation
on a computer. There are several subtle problems and strategies associated with
the multislice method, some of which will be discussed in this section. O’Keefe
and Buseck [379] were the first to describe a specific computer implementation.
Several other programs that have been described in the literature are listed in
Table 6.2. Many other multislice program have likely been produced but have not
been specifically described in the literature or otherwise missed in this abbreviated
survey.

Table 6.2 Some image simulation software packages appearing in the literature or online

Program Author Year Type Comments

SHRLI O’Keefe and Buseck [379] 1978, 1979 M

TEMPAS Kilaas [256] 1987 M

EMS Stadelmann [475] 1987 B

NCEMSS O’Keefe and Kilaas [381] 1988 M

MacTEMPAS Kilaas [257] ? M Online

CASINO Hovington et al. [102, 215, 216] 1997 SEM

TEMSIM Kirkland [273] 1998 M Online, openMP

? Ishizuka [235] 2001 B, M Online

? deGraf [164] 2003 B Online

JEMS Stadelmann [476] 2004 B, M Online

WebEMAPS Zuo [474, 549] 2005 B Online

EDM Marks et al. [332] 2006 B,M Online

CASINO-2 Drouin et al. [101] 2007 SEM

SimulaTEM Gómez-Rodríguez et al. [159] 2010 M Online

TEM Simulator Rullgård et al. [431] 2011 M Online

STEM CELL Grillo et al. [171, 172] 2013 M Online, MPI

STEMSIM Krause [295] 2013 M Online

computem Kirkland [276] 2013 M Online, openMP

QSTEM Koch [290] 2015 M Online

MULTEM Lobato [319] 2015 M Online, GPU

μSTEM Allen [6] 2015 B,M Online

FDES van den Broek [500] 2015 M Online

STEMsalabim Oelerich et al. [376] 2017 M Online, MPI

PRISM Ophus [387] 2017 M Online, GPU

STEMcl Radek et al. [410] 2018 M Online, GPU

Dr. Probe Barthel [24] 2018 M Online

MS-STEM-FEM Julian [251] 2018 M MPI

Ronchigram.com Schnitzer et al. [448] 2019 Ronchigram

Type M is multislice and type B is Bloch wave. Parallel programming models are openMP
(shared memory) and MPI (networked, distributed memory) and graphics processing unit (GPU).
Some of the listed programs may be commercial. Many other private programs likely exist

Ronchigram.com
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Table 6.3 Steps in the simulation of CTEM images of thick specimens

Step 1 Divide the specimen into thin slices

Step 2 Calculate the projected atomic potential vzn(x) (Eq. 5.19 or 5.21) for each slice and
symmetrically bandwidth limit them

Step 3 Calculate the transmission function tn(x) = exp[iσevzn(x)] (Eq. 5.25) for each slice
and symmetrically bandwidth limit each to 2/3 of its maximum to prevent aliasing

Step 4 Initialize the incident wave function ψ0(x, y) = 1

Step 5 Recursively transmit and propagate the wave function through each slice
ψn+1(x, y) = pn(x, y,Δzn) ⊗ [tn(x, y)ψn(x, y)] using FFTs as in Eq. 6.86. Repeat
until the wave function is all the way through the specimen

Step 6 Fourier transform the wave function at the exit surface of the specimen
Ψn(kx, ky) = FT [ψn(x, y)]

Step 7 Multiply the transmitted wave function Ψn(kx, ky) by the transfer function of the
objective lens, H0(k) (Eq. 5.27) to get the image wave function in the back focal plane
Ψi(k) = H0(k)Ψn(k)

Step 8 Inverse Fourier transform the image wave function ψi(x) = FT −1[Ψi(k)]
Step 9 Calculate the square modulus of the image wave function (in real space) to get the

final image intensity g(x) = |ψi(x)|2 = |ψn(x) ⊗ ho(x)|2
If there are a small number of distinct layers repeated several times, then the transmission function
for each can be calculated and stored; otherwise, they can be calculated as needed and discarded

The basic procedure for calculating CTEM and STEM images is similar to the
procedure for simulating thin specimens given in Tables 5.1 and 5.3 except that the
steps that propagate the electron wave function through the specimen are changed
into the recursive relation Eq. 6.67 or 6.86. The portion of the electron path in the
electron microscope that does not involve the specimen is identical for thin and
thick specimens. Tables 6.3 and 6.4 summarize the multislice method for CTEM
and STEM

6.10.1 The Propagator Function and Specimen Tilt

Small amounts of specimen tilt may be included with a small modification to the
propagator function (Eq. 6.65):

P(k,Δz, θ) = exp
[
−iπλk2Δz + 2πiΔz(kx tan θx + ky tan θy)

]
(6.93)

where θx, θy is the crystal tilt in the x, y directions, k2 = k2
x + k2

y , and Δz is the
slice thickness. This is equivalent to shifting the wave function between slices and
is only valid for small tilts of no more that about 1◦ (Cowley [74]). A specimen tilt
is not the same as a beam tilt because the beam direction has a strong interaction
with the electron optical aberrations of the objective lens. Ishizuka [231] and Chen
et al. [61] have given a more detailed discussion of tilt in multislice simulations.
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Table 6.4 Steps in the simulation of STEM images of thick specimens

Step 1 Divide the specimen into thin slices

Step 2 Calculate the projected atomic potential vzn(x) (Eq. 5.19 or 5.21) for each slice and
symmetrically bandwidth limit them

Step 3 Calculate the transmission function tn(x) = exp[iσevzn(x)] (Eq. 5.25) for each slice
and symmetrically bandwidth limit each to 2/3 of its maximum to prevent aliasing

Step 4 Calculate the probe wave function ψp(x, xp) at position xp (Eqs. 5.46 and 5.48)

Step 5 Recursively transmit and propagate the probe wave function through each slice
ψn+1(x, y) = pn(x, y,Δzn) ⊗ [tn(x, y)ψn(x, y)] using FFTs as in Eq. 6.86. Repeat
until the wave function is all the way through the specimen

Step 6 Fourier transform the transmitted wave function to get the wave function in the far
field (diffraction plane)

Step 7 Integrate the intensity (square modulus) of the wave function in the diffraction plane
including only those portions that fall on the detector (Eq. 5.51). This is the signal for
one point or pixel in the image

Step 8 Repeat step 4 through step 7 for each position of the incident probe xp

There is a multislice simulation for each point in the final image. If there are a small number of
distinct layers repeated several times, then the transmission function for each can be calculated
first and stored; otherwise, they can be calculated as needed and discarded. In a parallel computing
environment, many probes can be propagated at the same time on different processors

The propagator function requires a small but significant amount of computation
because of the transcendental functions. If the specimen contains many layers with
the same slice thickness it is advantageous to calculate the propagator once, in
advance, and then reuse it for each slice. The whole two-dimensional propagator can
require a significant amount of computer memory. However the propagator function
may be factored into an x component and a y component as:

P(k,Δz, θ) = Px(kx,Δz, θx)Py(ky,Δz, θy)

Px(kx,Δz, θx) = exp
[
−iπλk2

xΔz + 2πiΔzkx tan θx

]

Py(ky,Δz, θy) = exp
[
−iπλk2

yΔz + 2πiΔzky tan θy

]
(6.94)

This factorization can be put to good use when programming the multislice
simulation. Px(kx,Δz, θx) and Py(ky,Δz, θy) can be precalculated and stored
in two one dimensional arrays that require much less computer memory than a
whole two-dimensional array and then multiplied together when the whole two
dimensional propagator function is needed. This produces about the same reduction
in computer time as precalculating the whole two dimensional propagator (and
reusing it for each slice) but requires only a relatively small amount of additional
computer memory.
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6.10.2 Convergence Tests

The computer will merrily calculate the wave function with total disregard for the
accuracy of the calculation. It is the responsibility of the human user to interpret the
results and decide if they are correct or not. There are a variety of approximation
that go into the derivation of the multislice method and it is not guaranteed to give
the right answer for every possibly set of input parameters. The user must specify
the atomic coordinates of the specimen, the slice thickness, the size and number of
pixels in the wave function, and specimen potentials. In a practical sense there are a
lot more ways to make the simulation fail than there are to make it succeed. When
using a multislice simulation program (or any other simulation program) it is always
a good idea to be a little skeptical and do some testing to try and verify that the result
is correct or at least internally consistent.

The multislice algorithm has a built in parameter that can be used to verify
that it is running correctly. The electron wave function only interacts with the
specimen with elastic scattering as far as the simulation is concerned. This means
that the total number of electrons should be conserved. One easy test is to watch the
total integrated intensity of the electron wave function as it progresses through the
specimen. If the wave function incident on the specimen (plane wave for CTEM and
a focused probe for STEM) is normalized such that:

In =
∫

|ψn(x, y)|2dxdy = 1 for n = 0 (6.95)

where n is the slice index and n = 0 for the incident wave function, then In

should remain constant. The integrated intensity can become less than one if the
sampling is inadequate. When the specimen scatters electrons to high angle some
of them may be scattered outside of the maximum allowed angle (the 2/3 maximum
bandwidth limit required to eliminate aliasing). Once they are scattered outside
of this maximum limit then they are effectively lost to the calculation and In

decreases. The actual value of In has no particular physical significance other than
indicating whether or not the simulation is working. The electrons scattered outside
the maximum limit are just as likely to continue to higher angles or to be scattered
back to low angles. An In less than one only indicates the relative precision of
the simulation. In practice this number is not very sensitive to the accuracy of
the calculation. A value of In ≤ 0.90 is probably wrong (although it may give a
qualitatively valid image) and the sampling should be increased. This may mean a
smaller pixel size in real space or reciprocal space, more pixels or some combination
of these. Values of 0.95 ≤ In ≤ 1.00 are typical for well-behaved calculations. On
the other extreme values of In > 1.0 can also occur. An integrated intensity greater
than one is also a clear indication that the calculation is not correct (typically this
means that the slice thickness is too large).

Even if the total integrated intensity is within bounds the simulation is not
guaranteed to be correct either. One of the best tests is to compare two different
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simulations performed with slightly different sampling sizes (usually about a factor
of two apart is good). The multislice simulation is only accurate in the limit of
an infinitesimally small pixel size and slice thickness. If the sampling is adequate,
then reducing the pixel size or slice thickness by a factor of two should have no
effect. Therefore if two simulations with different sampling sizes produce the same
result, then the simulation is likely to have the proper sampling. The phrase “pixel
size” refers to both the real space pixel size and the reciprocal space pixel size.
If one simulation is performed with an image size of a × b and Nx × Ny pixels,
then increasing the number of pixels to 2Nx × 2Ny only tests the pixel size in real
space but not in reciprocal space. To test both pixel sizes the image size should be
increase to about

√
2a × √

2b and the number of pixels doubled in each direction
to 2Nx × 2Ny . This approach tests the pixel size in both real space and reciprocal
space at the same time.

All of the schemes for testing the accuracy of the simulation discussed above
are only testing the internal consistency of the calculation. In the end no amount
of internal consistency will guarantee that the simulation is correct. The only
real test is to compare to experimentally observed images. Comparisons between
real experimentally recorded image and theoretically simulated images have been
performed and the multislice simulation is generally agreed to produce acceptable
simulation of real images. Note, however, that most comparisons are done in a
rather qualitative manner. The simulated images are subjectively judged to look like
the experimentally observed image. This is due in part to the lack of quantitative
experimental image data. Usually important parameters such as defocus or the
incident beam intensity are simply not known, so a detailed quantitative comparison
is difficult.

6.10.3 Partial Coherence in BF-CTEM

The electron microscope image is never perfectly coherent as assumed in Table 6.3.
There is always a small spread in illumination angles from the condenser lens and a
small spread in defocus values due to small instabilities in the high voltage and lens
current supplies. When these effects are included the image is said to be partially
coherent. Section 3.2 discussed partial coherence in the linear image model and
Sect. 5.4.3 introduced the transmission cross coefficient for partial coherence in
nonlinear imaging of thin specimen.

If the specimen is not too thick and the amount of incoherence is small (small
condenser angle), then the transmission cross coefficient (Sect. 5.4.3) can be applied
to the wave function transmitted through the specimen via the multislice algorithm.
However if the spread in illumination angles is significant and the specimen is
thick, then the transmission cross coefficient is not quite right. Each illumination
angle incident on the specimen may interact differently with the specimen. Different
illumination angles may satisfy different diffraction conditions in the specimen. The
best way to simulate a large spread in illumination angles in a thick specimen is to
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perform a multislice simulation for each angle in the condenser aperture and sum the
results incoherently (OKeefe and Sanders [382]) assuming the source is incoherent.
If kβ is one angle in the condenser aperture, then the initial wave function is:

ψ0(x) = exp(2πikβ · x) (6.96)

This wave function is then recursively transmitted through the specimen using the
multislice algorithm (Eq. 6.86) yielding a transmitted wave function of ψn(x, kβ).
Each of these wave functions should then be convolved with the objective lens point
spread function h0(x) and incoherently summed to give a final image intensity of:

g(x) = 1

Nβ

∑

kβ

|ψn(x, kβ) ⊗ h0(x)|2 (6.97)

where Nβ is the number of condenser illumination angles used. The illumination
angles vary in two dimension and must match the existing periodic boundary condi-
tions of the specimen (i.e., only integer coordinates in the Fourier transform). This
summation can require a significant amount of computer time but is not excessive
on currently available computer hardware for reasonable sizes of condenser angles.
If the condenser aperture is not uniformly illuminated, then a suitable weighting
factor can be added to Eq. 6.97. A defocus spread can also be included by simply
integrating over a range of defocus values Δf as:

g(x) = 1

CNβ

∑

kβ

∑

Δf

p(Δf )|ψn(x, kβ) ⊗ h0(x,Δf )|2 (6.98)

C =
∑

Δf

p(Δf )

where p(Δf ) is the probability distribution of defocus values. The integration over
defocus is relatively quick compared to the integration over illumination angles
because it does not require a multislice simulation for each defocus value.

6.10.4 Parallel Computing

The current trend in computer hardware is to organize many processors (or CPUs)
to cooperatively work on a common calculation. Improvements in the speed of
individual processors appear to be nearing a physical speed limit. Historically,
the transistors in the CPU were made faster by making them smaller to reduce
parasitic capacitance, etc. This leads to Moore’s Law [360] stating that the number
of transistors on an IC doubles about every 2 years. The dimensions of a single
transistor are now approaching the spacing between atoms in the semiconducting
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material the transistors are made of, so cannot get much smaller. The speed of an
individual CPU seems to be approximately constant over the last few years. The
principle method of increasing computer capabilities is to use more than one CPU
on a given problem. Moore’s Law is still in effect after 50 years because more
transistors on an IC are being used to make more CPUs on a single IC. This trend
of multiprocessing may be here to stay. Even inexpensive computers intended for
personal use can have much more than a single processor, so this trend is worth
exploiting. Most of the algorithm development in the past was modeled on a single
processor approach, so many algorithms require a complete reorganization to use
more than one processor at a time and many new algorithms are being developed
for this mode of computation. Fortunately, there are several relatively easy ways to
use multiple CPUs in the multislice simulation method, which have been used by
many authors in recent years (see Table 6.2).

There are currently three different popular methods of connecting multiple
processors together that mainly differ in how the memory is accessed as outlined
in Fig. 6.14. One is the shared memory processing (SMP, Fig. 6.14a) approach in
which many processors share the same large block of memory with a fast data
path to and from this memory. The CPUs are typically on the same IC or circuit
board. The processors communicate by reading or writing data from or to this fast
memory. This approach is usually limited to a small number (of order 2–16, but
increasing every year) of processors due to the hardware difficulty of connecting

Fig. 6.14 Parallel computing
architecture models. (a)
Shared memory processors
(SMP), (b) distributed
memory architecture with
message passing over a fast
network (cluster), and (c)
graphical processing unit
(GPU)
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multiple processors to the same memory at high speed. SMP has the advantage of
being easier to program.

A second approach uses distributed memory and many physically separate
computers, each with their own memory, connected together on a very fast external
network switching hub (connection), collectively called a cluster (Fig. 6.14b). This
has the advantage of using existing computers and allows a vast numbers (perhaps
thousands) of processors to be coupled into one system. The only limit on the
maximum size is the available money and space. The disadvantage is that the
communications between processors is relatively slow (compared to SMP) which
is a little harder to program in some cases. Each node in a computing cluster can
also have the SMP mode of operation. Robertson [422] and Grillo et al. [57, 170]
have implemented ADF-STEM on an MPI cluster.

A third new approach uses specialized graphics processors (GPUs) with thou-
sands of very inexpensive processors (Fig. 6.14c). Video display processors have
evolved to render images very fast in real time, principally for the computer gaming
market. Conceptually a GPU board tries to produce a dedicated numerical processor
(CPU) for each pixel in the display (a goal not yet achieved in practice). The
manufactures have also realized a more scientific use for this computing capability
and allow a programmer to access this large array of dedicated CPUs for numerical
processing independent of a video display. There are typically several thousand
simple cores or CPUs on a single GPU board. However these cores are not general
purpose CPUs capable of running stand-alone programs but must be controlled
from the host computer. The host launches a large number of similar tasks to
run in parallel on all of the GPU cores at once. Each core runs one thread or
simple instruction sequence. This can be referred to as a SIMT (Single Instruction
Multiple Threads) architecture (for example, Sanders and Kandrot [433]). These
may be difficult to program but can be very inexpensive. TEM image simulations
have been studied by Dwyer [105, 106] and Lobato et al. [319], and diffraction
simulation by Eggman et al. [110]. Hosokawa et al. [212] have benchmarked GPU
multislice code. A GPU approach currently seems to be an economical approach to
parallel multislice computations.

Multiprocessing has been around for a long time. Recent software developments
have made it a lot more attractive in recent years. SMP hardware has moved into
the mainstream of inexpensive every day computers (not just expensive research
computers) and the software tools have become easy to use. Two packages are
worth mentioning; openMPI is a message passing environment for a distributed
memory cluster and openMP for a shared memory (SMP) environment (see, for
example, Quinn [409]). Many compilers now support one or both of these in some
manner. This software is relatively easy to use (compared to previous vendor specific
approaches) and is nonproprietary. It is being implemented on a variety of different
computing platforms, so is likely to last for a long time. Parallel programming can
be thought of as a collection of instruction sequences or threads that run at the same
time and combine their results at the end. Each thread is controlled in software
in openMP and openMPI so there is a large overhead for starting and stopping a
thread. To be effective, each thread should perform a large amount of calculations;
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otherwise, the CPU time just goes into managing the threads and not the calculation.
This may be referred to as coarse grain parallelization, and requires reorganizing the
program flow so that various parts of the calculation can proceed independently at
the same time on different CPUs. GPUs, however, seem to manage a very large
number of threads in parallel with little or no overhead per thread (probably in
hardware not software). Each GPU core is less capable than the host CPUs but
there are a very large number of them. To be effective there should be a large
number of simple operations performed in parallel at the same time organized in
a fine-grain parallelization mode. Some operations do not easily translate into a
GPU mode. For example, a simple integral (or long summation) cannot be easily
performed using a fine-grain parallelization because all threads need to access the
same summation variable at the same time (a slightly complicated work around
is to divide the summation into sub-sums). Fine and coarse grain programming
are opposite programming strategies. A fine-grain approach is like attaching the
problem with a large swarm of bees and the coarse grain approach is more like using
a small pack of wolves. Each has its limitations. Typically there may be 10–20% of
the code that cannot be converted to run in parallel and must remain sequential on
a single host CPU. This limits the maximum increase is speed to about 5× to 10×
without an heroic programming effort.

There are several ways to utilize multiple processors in parallel in a multislice
calculation. It is not so obvious for a Bloch wave calculation, although the
ScaLapack subroutine package targets a many processor distributed cluster and may
help with the eigenvalue calculation which is the main portion of the calculation.
At a low level the multidimensional FFT (in this case 2D, used in the multislice
method) can easily be split into many parallel paths. Each row can be done be a
different processor in one direction and then each col. in the other direction. Various
sums in the transmission function can also be split into separate processors. Both
of these methods are a relatively fine-grain parallelization and work best on an
SMP machine. A distributed memory cluster may not yield an improvement this
way due to the increased communications overhead. An ADF-STEM calculation
can be extremely compute intensive. However, it is also very easy to expand into a
multiprocessor mode. The transmission of each probe position in the image can be
put on a separate processor and run in parallel. This has the advantage of a coarse
grain parallelization and may work well in a distributed memory environment.
The ADF-STEM code used here uses this approach in an SMP mode or GPU mode.

6.11 More Accurate Slice Methods

There are (at least) four main approximations that limit the accuracy of the
calculation. First is the neglect of backscattered electron. Second is the neglect of
the second order term, Eq. 6.41 (also known as the high energy approximation).
Third is the independent atom approximation (Eq. 5.19) and fourth is a nonzero
slice thickness and limited accuracy relating to the slice thickness. The first three
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are also in the Bloch wave solution. Improving any of these may in principle
improve the accuracy of the calculation. The multislice solution is automatically
stable because each step is a unitary operation which is a big advantage, but it is not
that accurate (stability and accuracy are two different things).

Watanabe et al. [527, 528] have proposed an alternate approach to the solution
of the Howie–Whelan equations using a direct integration of the second order
equations plus a convolution; however, their approach requires a very small step size
so is not that practical. Hiller et al. [206] have discussed the effects of the second
order term using a direct Runge–Kutta method. Dulong et al. [104] have done a
similar study for Bloch wave calculations.

Chen et al. [60, 62], Cai et al. [55], Cai and Chen [54], and Wacker and Schöder
[514] have proposed more accurate (higher order) multislice formulations. Ming
and Chen [347] have compared three possible multislice methods (standard as in
this chapter and two more accurate methods) and found that the standard multislice
method agrees with more accurate methods at beam energies of 50 kV and higher
but deviates significantly at 20 kV. Kirkland [277] compared the standard multislice
method (with a special slice integration method for thin slices) to a multislice
method with a slice thickness less than about 0.1 Å (i.e., more accuracy) and found
a similar result in crystalline gold. Generally speaking, the standard multislice
formulation is fast and accurate for beam energies above about 50 V or 60 kV, and
higher order methods are much slower but probably required for lower energies such
as 40 kV and lower

The standard multislice expression is only accurate to first order in Δz. There is
some incentive to find more accurate solutions in which the error term is a higher
power (or order) of the small quantity Δz. An obvious idea is to simply average
Eqs. 6.67 and 6.68 to increase the accuracy by one order in Δz. This approach is
more accurate but unfortunately also doubles the computer time. Averaging would
also have the benefit of insuring that reciprocity is obeyed.

6.11.1 Operator Solutions

One obvious weak spot in the multislice derivation is factoring the combined
operator Eqs. 6.56 and 6.57. An alternate approach to factorizing the combined
operator is:

exp (Aε/2) exp (Bε) exp (Aε/2)

=
[

1 + A
ε

2
+ 1

2!A
2
(ε

2

)2 + · · ·
] [

1 + Bε + 1

2!B
2ε2 + · · ·

]

×
[

1 + A
ε

2
+ 1

2!A
2
(ε

2

)2 + · · ·
]

= 1 + (A + B)ε + 1

2! (A
2 + AB + BA + B2)ε2 + O(Δz3) (6.99)
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where A and B are non-commuting matrices or operators and ε is a small scalar
quantity. By comparison to Eq. 6.53 the operator relevant to the multislice method
can be written in symmetrical form as:

exp(Aε + Bε) = exp (Aε/2) exp (Bε) exp (Aε/2) + O(ε3) (6.100)

The error term is proportional to O(Δz3) which is one order better than the
previous identities (Eqs. 6.56 and 6.57) used in the standard multislice derivation.
This symmetrical operator approximation has been used to simulate the paraxial
propagation of laser beams by Fleck et al. [138] with a method very similar to the
multislice method.

van Dyck [502, 506] has pointed out that this new operator identity allows
the standard multislice equation to be re-interpreted in a more accurate manner.
Applying Eq. 6.100 to the multislice Eq. 6.51 yields:

ψn+1(x, y) = pn(x, y,Δz/2) ⊗ {tn(x, y) [pn(x, y,Δz/2) ⊗ ψn(x, y)]}
+O(Δz3) (6.101)

where ψn(x, y), pn(x, y,Δz/2), tn(x, y) are the wave function, propagator func-
tion, and transmission functions of the nth layer. The propagator function of the
nth layer is split into two component each with thickness Δz/2. When Eq. 6.101 is
applied recursively the convolution with the propagator on the right combines with
the convolution with the propagator of the left to yield:

pn+1(x, y,Δzn+1/2) ⊗ pn(x, y,Δzn/2)⊗ = p(x, y,Δz)⊗ (6.102)

if Δzn = Δzn+1 = Δz. The final result is a succession of convolutions with the
propagator and multiplication by the transmission function that is identical to the
standard multislice formulation with only one additional propagation by Δz/2 at
the end. This means that the standard multislice method (Eqs. 6.67 and 6.68) can be
interpreted as being accurate to O(Δz3) locally and O(Δz2) globally if the result
is offset by one half of a slice thickness. The defocus is rarely known with much
accuracy so this offset is negligible. Van Dyck [503, 505, 506] and Chen [60, 62]
have proposed other possible higher order methods.

6.11.2 Finite Difference Solutions

Another approach to increasing the accuracy is to include more terms in the Taylor
series expansion for ψ in Δz. Consider the following expansions for both positive
and negative steps in z and temporarily drop explicit reference to the independent
variables x and y in ψ .
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ψ(z + Δz)

= ψ(z) + Δz
∂ψ(z)

∂z
+ 1

2!Δz2 ∂2ψ(z)

∂z2
+ 1

3!Δz3 ∂3ψ(z)

∂z3
+ · · · (6.103)

ψ(z − Δz)

= ψ(z) − Δz
∂ψ(z)

∂z
+ 1

2!Δz2 ∂2ψ(z)

∂z2 − 1

3!Δz3 ∂3ψ(z)

∂z3 + · · · (6.104)

Subtracting Eqs. 6.103 and 6.104 yields:

∂ψ(z)

∂z
= ψ(z + Δz) − ψ(z − Δz)

2Δz
+ O(Δz2) (6.105)

All terms containing even derivatives vanish identically leaving only the higher
order error term proportional to Δz2. If instead Eqs. 6.103 and 6.104 are added,
then:

∂2ψ(z)

∂z2
= ψ(z + Δz) − 2ψ(z) + ψ(z − Δz)

Δz2
+ O(Δz2) (6.106)

where all terms containing odd derivatives vanish identically leaving only the error
term proportional to Δz2. These are the finite difference approximations to both
the first and second derivatives of ψ(z) with respect to z. The Schrödinger wave
equation (6.40) for the slowly varying portion of the wave function contains both
first and second derivatives with respect to z. Rewriting it using the interaction
parameter σe = 2πmeλ/h2:

[
∂2

∂z2 + 4πi

λ

∂

∂z
+ ∇2

xy + 4πσe

λ
V (x, y, z)

]
ψ(x, y, z) = 0 (6.107)

Next substitute the finite difference approximations for the first and second deriva-
tives (Eqs. 6.105 and 6.106) without ignoring the second derivative with respect to z

as was done for the Howie–Whelan equations and the traditional multislice solution.

ψ(z + Δz) − 2ψ(z) + ψ(z − Δz)

Δz2
+ 4πi

λ

ψ(z + Δz) − ψ(z − Δz)

2Δz

+∇2
xyψ(z) + 4πσe

λ
V (x, y, z)ψ(z) + O(Δz2) = 0 (6.108)
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Multiply by Δz2, rearrange terms and restore the reference to the x, y dependence
in ψ :

ψ(x, y, z + Δz) = 1

c+

[
2 − Δz2

(
∇2

xy + 4πσe

λ
V (x, y, z)

)]
ψ(x, y, z)

−
(

c−
c+

)
ψ(x, y, z − Δz) + O(Δz4/c+) (6.109)

c+ = 1 + 2πiΔz/λ

c− = 1 − 2πiΔz/λ

Δz/λ >> 1 so that dividing by c+ does not necessarily reduce the order of the
error term. The values of ψ(x, y) are calculates in an xy plane at z + Δz from ψ

in an xy plane at z and z − Δz. This is also a slice method but of higher accuracy
because the error term is a higher power of the small quantity Δz and because the
second derivative of ψ with respect to z has not been ignored. This method can
be referred to as a three plane slice method (or finite difference method) because
the values of ψ(x, y) in three planes are related to one another in each iteration.
The standard multislice method can be referred to as a two plane slice method. When
using a discretely sampled wave function and potential this method should also be
bandwidth limited to 2/3 of its maximum (both ψn(x, y) and V (x, y)) just as in the
standard multislice method to avoid aliasing. The potential V (x, y, z) is not a very
well-behaved function. It is strongly peaked near the center of each atom (with a
logarithmic singularity) which may defeat the higher accuracy of this equation. For
comparison repeating the above derivation without the second derivative term yields
the result:

ψ(x, y, z + Δz) = 2

[
Δz

iλ

4π
∇2

xy + iσeΔzV (x, y, z)

]
ψ(x, y, z)

+ψ(x, y, z − Δz) + O(Δz3) (6.110)

The other second derivative term ∇2
xyψ can be approximated with its finite

difference equivalent:

∇2
xyψ(x, y) = ψ(x + Δx, y) − 2ψ(x, y) + ψ(x − Δx, y)

Δx2

+ ψ(x, y + Δy)−2ψ(x, y)+ψ(x, y −Δy)

Δy2

+O(Δx2) + O(Δy2) (6.111)

or by using a pair of FFTs as:
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∇2
xyψ(x, y) = FT −1

[
−4π2k2FT [ψ(x, y, z)]

]
(6.112)

where FT is the two-dimensional Fourier transform with respect to x and y and
k2 = k2

x + k2
y is the spatial frequency. Using the Fourier transform does not add a

significant error if the sampling is adequate.
Equation 6.109 uses the atomic potential directly (without projection) and does

not suffer from a minimum slice thickness limitation as in the standard multislice
method although it has an opposite problem. If the slice thickness is too thick
(greater than about 1 Å), then Eq. 6.109 can possibly lose some atoms in between
slices.

This method (Eq. 6.109) is accurate to about one order better than the standard
multislice method and is more complete because it includes the second derivative
(with respect to z) term. The local (or per step) error is O(Δz4) and the total or
global error is O(Δz3) if each slice is symmetrical about its center. This solution
requires two FFTs to calculate ∇2

xyψ(x, y) plus several pairs of FFTs to bandwidth
limit the appropriate functions (to avoid aliasing) for each iteration. This amount
of computation is similar to the amount of computation in the standard multislice
method. However it requires the storage of an additional set of wave function values
ψ(x, y, z − Δz) (which is only a mild inconvenience with the current low cost
of memory) and it requires that each slice thickness be identical (which can be a
significant problem with some specimens). Also, the initial values ψ are required
at two values of z. If there are N = NxNy Fourier coefficients, then the computer
memory requirements scale as N and the computer time scales as N log2 N , similar
to the standard multislice method. This method (Eq. 6.109) is similar to that tested
by Kosloff and Kosloff [292] for solution of the time dependent Schrödinger wave
equation in molecular dynamics calculations and may eventually have some value
in electron microscope image simulation.

Although more accurate this method is not stable for an arbitrary slice thickness.
At each step the current solution ψn(x, y, z) will include some small error either
from the finite precision arithmetic of the computer or from the errors arising from
truncating the Taylor series at only the first few terms. It is important to consider
how the recursive calculation in Eq. 6.109 treats this error. If a small error increases
with each step, then the method is unstable and if it decreases with each step, then
the method is stable. First consider a small error with a particular two-dimensional
spatial frequency ke = (kxe, kye) and amplitude εn in the wave function ψn(x, y).
This error will give rise to an associated error in the wave function in the next plane
ψn+1(x, y).

ψn(x, y) → ψn(x, y) + εn exp(2πike · x)

ψn+1(x, y) → ψn+1(x, y) + εn+1 exp(2πike · x) (6.113)

Substituting these into Eq. 6.109 yields an expression relating the amplitude of the
error at each step (neglecting a possible error in ψn−1(x, y)).
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εn+1 exp(2πike · x) = 1

c+

[
2 − Δz2

(
∇2

xy + 4πσeV/λ
)]

× εn exp(2πike · x) (6.114)

The rate of growth g of the error must be less than or equal to one to produce a
stable recursive solution.

g =
∣∣∣∣
εn+1

εn

∣∣∣∣ =
∣∣∣∣

1

c+

[
2 − Δz2

(
−4π2k2

e + 4πσeV/λ
)]∣∣∣∣ ≤ 1 (6.115)

This is the von Neuman stability analysis (for example Press et al. [406]). Further
rearranging Eq. 6.115 yields:

k2
e <

1

4π2Δz2

[√
1 + 4π2Δz2/λ2 − 2

]
+ σeV

λπ
(6.116)

Note that the last term is always positive. This expression means the bandwidth of
the calculation (the maximum of |ke|) is coupled to the slice thickness. Either the
bandwidth or the slice thickness should be reduced to produce a stable solution.
Unfortunately the slice thickness must typically be reduced to about the same size
as the pixel (of order 0.1 Å) so this method is not competitive with the standard
multislice method (with a slice thickness of order 2–3 Å). This argument does,
however, explain why the standard multislice method is stable and well behaved.
Each multislice step is unitary meaning that ψn is multiplied by a factor whose
magnitude is identically one (i.e., the exponential of a pure imaginary number).
This means that each step of the standard multislice is unconditionally stable (there
is a distinction between stability and accuracy, however).

In the long run any higher order solution may be defeated by the ill behaved
nature of the specimen potential V (x, y, z) (i.e., it has a sharp cusp or singularity
near the atomic nucleus). The error term is proportional to Δz3, and the other factors
of the error term involve various derivatives of the wave function which indirectly
involve various derivatives of the potential. If there are singularities in the potential,
then the higher order derivatives in the Taylor series can grow abnormally large
making convergence slow at best.

This finite difference method with three slices (Eq. 6.109) will be very slow in
comparison to the standard two slice multislice method so is not very competitive in
most ways. However, it is worth comparing results as a test of accuracy. Figure 6.15
shows the results of the standard multislice and the three slice finite difference
(labeled MS and FD, respectively) for 60 kV along the c axis of gold (face centered
cubic lattice). The principle 000 beam and one diffracted beam are shown versus
depth into the specimen.

A single gold atom is not a weak phase object at 60 kV so this energy is a good
test of the accuracy of the standard multislice method (MS). The three slice FD
solution was calculated with a step size of c/400 (about 0.01 Å) and c/800 (about
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Fig. 6.15 Comparison of the conventional multislice calculation (MS) to a more accurate three-
slice finite difference solution (FD) for a beam energy of 60 kV in gold (c = 4.078 Å). The intensity
of the 000 and 400 (about 1 Å) beams are plotted versus distance into the specimen (z). The
specimen supercell size was 7 by 7 unit cells and the wave function was sampled with 1024 by
1024 pixels

0.005 Å), which should be sufficient to subdivide the atom (the full 3D potential not
the projected atomic potential was used). The two step sizes agree which indicates
that this step size is small enough. The MS and FD method agree fairly well to a
depth of about 60 Å, which is very good. This result seems to say that neglecting the
second derivative (in z, the high energy approximation) and using a slice thickness
of an atom or so does not cause significant problems in the standard multislice
(MS) method. This thickness of gold is much greater than would be usable in
the microscope. The agreement should get better as the beam energy is increased
or the atomic number of the specimen is decreased. This test has not tested the
significance of ignoring the backscattered electron (of which there may be a large
amount) or the independent atom approximation (IAM), but is encouraging for
continued use of the standard multislice method. The IAM is not really part of
the numerical method but rather the specimen model. Further attempts to use a
more accurate specimen potential will likely require a method similar to this FD
calculation with a finer sampling of the potential which will be a computational
challenge.



Chapter 7
Multislice Applications and Examples

The multislice method simulates electron transmission in a thick specimen including
dynamical scattering. Chapter 6 presented the theory of the multislice method and
discussed how to use it in general terms. This chapter will give some specific
examples of performing a multislice simulation. The examples serve to illustrate
some typical multislice results and also provide a more detailed description of using
the multislice method.

A prerequisite for image simulation is a detailed description of the coordinates
of the atoms in the specimen. The two-volume set of Wyckoff [539] is a good
starting point for many common materials with a crystalline structure. The books
by Megaw [342] and Vainshtein et al. [498, 499] give a thorough discussion of
crystal structure. There are also numerous journal articles (see, for example, the
journal Acta Cryst.) and web sites with crystal structure information. For example,
the Crystallography Open Database (www.crystallography.net) and the Protein Data
Bank or PDB (www.rcsb.org) [30], and the Electron Microscopy Data Bank (www.
ebi.ac.uk/pdbe/emdb) for biological structure information using cryo-EM.

7.1 Gallium Arsenide

Gallium arsenide (GaAs) is a relatively simple structure similar to that of silicon
(the diamond structure) except that adjacent atoms alternate between gallium and
arsenic in the zinc sulfide (or zincblende) structure. The cubic lattice constant is
slightly bigger (5.65 Å) than that of silicon (5.43 Å) so that it may be slightly easier
to image in the electron microscope. However the atoms in GaAs are significantly
heavier (atomic number Z = 31 and 33 for Ga and As, respectively) and scatter
more strongly than silicon (Z = 14). GaAs may be expected to have more
dynamical scattering than silicon, so a simple phase grating calculation (as in
Chap. 5) may not be sufficient. This is a good place to start testing the multislice
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Fig. 7.1 The structure of gallium arsenide (GaAs) projected along the 110 direction. GaAs has a
zincblende structure with a cubic lattice constant of aGA = 5.65 Å. (a) and (b) are two different
atomic layers suitable for use in a multislice calculation and (c) is the projection of whole specimen.
The layers are stacked in the sequence ababa . . . . Each layer is 1.998 Å thick (along z or the optic
axis) and 3.995 × 5.65 Å in x and y (in the plane of the paper)

method because this specimen may produce significant dynamical scattering but is
relatively simple to describe.

In the 110 projection GaAs has a projected structure as shown in Fig. 7.1. The
main difference between silicon (Fig. 5.15) and GaAs is that there are two different
types of atoms (Ga and As). In the 110 projection, GaAs naturally divides into two
different layers (labeled a and b in Fig. 7.1). The layers are stacked in the sequence
ababa . . . with a spacing along the z axis (optic axis) of

√
2aGA/4 = 1.9976 Å.

Silicon can be divided in the same manner if the Ga and As atoms are replaced with
Si and the lattice constant is changed. It is best to use these two layers as the slices
in the multislice method. The thickness is small enough to get an accurate answer
(which is usually the case for the natural layers in a small unit cell crystal) and
using the natural layers of the specimen will ensure that the multislice simulation
correctly reproduces the HOLZ (or upper layer lines) portion of the diffraction
patterns. Although the HOLZ lines may not contribute directly to a BF CTEM phase
image of a thin specimen, getting the HOLZ lines correct is frequently required
for an accurate simulation of thick specimens in BF (to get the phase of the low
order reflections correct) and is usually required for ADF-STEM images because
the ADF detector collects large scattering angles (where the HOLZ lines are). The
actual atomic coordinates for each layer are shown in Table 7.1.
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Table 7.1 The normalized coordinates for two layers in one projected unit cell of the (110)
projection of GaAs. The two-dimensional unit cell dimensions are a0 ×b0 where a0 = aGA/

√
2 =

3.995 Å and b0 = aGA = 5.65 Å. aGA is the cubic lattice constant of GaAs

Atom Layer x/a0 y/b0

Ga a 0 0

As a 0.5 0.75

As b 0 0.25

Ga b 0.5 0.5

7.1.1 BF-CTEM Simulation

Once the structure of the specimen has been determined and a convenient way of
layering or slicing the specimen has been identified, the next step is to find the
correct sampling for the simulation. The general guidelines for simulating thin
specimens (Table 5.4) are a good starting point. Dynamical scattering in a thick
specimen will also introduce further constraints on the sampling. The easiest way to
discover these sampling requirements is to simply try a range of super cell sizes with
different numbers of pixels. A sequence of trial multislice runs (using an incident
plane wave) is shown in Table 7.2 for two different thickness of 110 GaAs. The super
cell sizes were chosen to yield a reciprocal space sampling size of about 1 mrad at
200 keV to get adequate sampling inside the objective aperture. The columns labeled
“Intensity” refer to the total integrated intensity in the final electron wave function at
the exit surface of the specimen. As discussed in Sect. 6.10.2 the integrated intensity
should remain constant at unity if there is adequate sampling. Typically this value
will decrease with thickness but should not go below about 0.90 for a reasonable
simulation, and a value of 0.95 or higher is typical for a good simulation. Table
7.2 shows that this simulation probably needs about 512 × 512 pixels (or more) to
simulate a thickness of 200 Å.

The magnitude |ψ(x, y)| of the electron wave function ψ(x, y) after passing
through a thickness of 10(ab) and 50(ab) layers (40 and 200 Å) is shown in
Fig. 7.2. An ideal perfect microscope with amplitude contrast would produce an
image similar to that in Fig. 7.2. A phase grating calculation (as in Chap. 5) would
yield identically |ψ(x, y)| = 1 across the whole area because it approximates the
transmission process as a pure phase shift. Figure 7.2 illustrates that the specimen
is not a pure phase object. The electron intensity accumulates near the atom sites
(a white spot in Fig. 7.2). The imaging electrons see a large positive charge at the
atom nucleus that is screened by the bound electrons of the atom. Far away from
the atom the imaging electrons (at 200 keV in this example) do not see any net
charge (for neutral atoms the positive charge on the nucleus equals the number of
negatively charged bound electrons), but near the nucleus the imaging electrons see
the large positive charge on the nucleus and are attracted to the center of the atoms
in the specimen. The imaging electrons effectively get channeled into the atomic
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Table 7.2 The effects of sampling on a multislice calculation of 110 GaAs

Number Max angle Intensity Intensity
Unit cells Size (in Å) of pixels (mrad) at 10(ab) at 50(ab)

5a0 × 3b0 19.98 × 16.95 128 × 128 53.6 0.969 0.821

” ” 256 × 256 107.1 0.987 0.906

” ” 512 × 512 214.3 0.997 0.978

6a0 × 4b0 23.97 × 22.2 128 × 128 44.6 0.964 0.802

” ” 256 × 256 89.3 0.980 0.871

” ” 512 × 512 178.6 0.995 0.967

7a0 × 5b0 27.97 × 28.25 128 × 128 37.9 0.967 0.812

” ” 256 × 256 75.8 0.975 0.849

” ” 512 × 512 151.5 0.993 0.951

8a0 × 6b0 31.96 × 33.9 128 × 128 31.6 0.969 0.807

” ” 256 × 256 63.1 0.972 0.834

” ” 512 × 512 126.3 0.991 0.938

” ” 1024 × 1024 252.5 0.998 0.982

The two-dimensional unit cell dimensions are a0 = aGA/
√

2 = 3.995 Å and b0 = aGA = 5.65 Å.
aGA is the cubic lattice constant for GaAs. 10(ab) means that there are 10 repeats of both the a
and b layers (about 40 Å thick). 50(ab) results in a thickness of about 200 Å

Fig. 7.2 The magnitude of the electron wave function |ψ(x, y)| (in real space) after passing
through (a) 40 Å and (b) 200 Å of 110 GaAs at an electron energy of 200 keV. The super cell
size is 6a0 × 4b0 with 512 × 512 pixels. The scale bar in (a) is 5 Å. The numerical range of each
image is (a) 0.18–3.70 and (b) 0.01–3.30 (white is a larger positive number)

columns in the specimen. The black ring surrounding each atom site is a depletion
of electron intensity.

Channeling is not a static process either. As the imaging electrons progress
further through the specimen, they may be scattered out of the atomic column as
well. Figure 7.2b shows this effect. The As atoms have a slightly larger positive
charge on the nucleus. The white spot at the As sites is less bright than the white
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Fig. 7.3 The intensity and
phase of the kx = ky =0
Fourier coefficient of the
200 keV electron wave
function as it passes through
the 110 projection of GaAs.
The super cell size is
6a0 × 4b0 with 512 × 512
pixels

spot at the Ga sites indicating that the imaging electrons are diminishing in intensity
at the As sites. This is a dynamical scattering effect. The relative intensities of the
channeling peaks on the Ga and As sites will likely oscillate with thickness. There is
a faint structure in the magnitude of the electron wave function that looks like
standing waves between the atom sites. This occurs when the HOLZ lines appear
and it is not always clear whether this is the real space manifestation of the HOLZ
lines or simply a sampling error.

Figure 7.3 shows the intensity and phase of the kx = ky = 0 Fourier
coefficient (or zero order beam) of the wave function of the electron as it is passing
through the specimen. Both the intensity and the phase oscillate with depth, clearly
indicating the dynamical nature of the scattering process. All of the nonzero Fourier
coefficients or beams will oscillate with depth, although with a different period. The
period of oscillation is referred to as the extinction depth for the particular beam
(or Fourier coefficient). The dynamical nature of the scattering process is completely
lacking in a phase grating calculation (as in Chap. 5) and the multislice calculation
(or equivalently a Bloch wave calculation) is required to correctly simulate strongly
scattering specimen (more than about 10–20 Å in the case of 110 GaAs).

The simulated bright field (BF) phase contrast image is shown in Fig. 7.4 for
various thickness of the specimen. Scherzer conditions were used for the defocus
and partial coherence was approximately included using the transmission cross
coefficient (Sect. 5.4.3). Figure 7.4a is for two layers of the specimen and is
approximately the same as a phase grating calculation. Each pair of atoms (Ga
and As) in the dumbbell appears as a black ellipse. Figure 7.4b is for a slightly
thicker crystal. The relative phases of the Fourier coefficients have already changed
significantly. Some features that should be white are black and vice versa. The
image has a lot of artifacts. These artifacts can vary dramatically with small changes
in defocus and the size of the objective aperture. Figure 7.4c is a thick crystal.
Although the overall periodicity is again correct there has been a contrast reversal.
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Fig. 7.4 Calculated bright field phase contrast images for different thickness of 110 GaAs at
200 keV. Cs = 0.7 mm, Δf = 513 Å, obj. apert. 14 mrad, with partial coherence (1 mrad spread in
illumination and 100 Å defocus spread). (a) 4 Å(2 layers), (b) 40 Å(20 layers), and (c) 200 Å(100
layers). The super cell size is 6a0 × 4b0 with 512 × 512 pixels. The range of each image is (a)
0.90–1.05, (b) 0.57–1.20, (c) 0.35–1.43 (white is a larger positive number). The scale bar in (a)
is 5 Å

This illustrates why image simulation is necessary to interpret a high-resolution
phase contrast image.

7.1.2 ADF-STEM Simulation

The annular dark field (ADF) STEM image is a small signal (compared to phase
contrast BF) and directly involves high angle scattering. Both of these effects
are more difficult to calculate and an ADF-STEM image simulation requires
more attention to the accuracy and tolerance of the calculation (i.e., sampling
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requirements). Finding the super cell size and number of pixels to achieve a total
integrated intensity of nearly unity (as in Table 7.2) is the first requirement. It
is also a good idea to test the accuracy more directly. This is conveniently done
by comparing two different simulations with slightly different sampling. If the
sampling is adequate, then there should be no difference between using Nx × Ny

pixels and 2Nx × 2Ny pixels with a similar real space super cell size. There are two
different sampling requirements that should be tested. The pixel size (and number
of pixels) in both real space and reciprocal space is important. The number of pixels
is restricted to powers of two (for the most efficient FFT) so the two simulations
must differ by a factor of two in the number of pixels. If the real space super
cell size were left the same, then the sampling in real space (Δx and Δy) would
double; however, the pixel size in Fourier or reciprocal space (Δkx = 1/a and
Δky = 1/b) would remain the same. To vary both at the same time the super cell size
should be increased by about a factor of

√
2 (within the constraints of the specimen

periodicity) to get approximately the same reduction in the pixel size in both real
space and reciprocal space.

Figure 7.5 shows a comparison between two different simulations with different
sampling sizes on the 110 projection of GaAs. This is only a test of the sampling,
so a full image simulation is not necessary. An ADF-STEM multislice simulation
requires a full multislice calculation for each position of the scanned probe which
can require a lot of computer time. A simple one-dimensional line scan through an
appropriate feature of the specimen is usually sufficient to test the sampling, but
requires substantially less computer time. Figure 7.5 shows a scan through adjacent
Ga and As atoms along the direction of their closest position (vertical in Fig. 7.1).
The low resolution simulation had a super cell size of 6a0×4b0 with 512×512 pixels
and the high-resolution simulation had a super cell size of 8a0 × 6b0 with 1024 ×
1024 pixels. There is a good agreement between the two curves so this sampling is
probably adequate for performing the simulation. The difference between the two
curves can also serve as an estimate of the sampling error in the simulation. The As
atom is slightly heavier (Z = 33) than the Ga atom (Z = 31) so the peak on the
As position is slightly higher (stronger scattering at the As position). Also, there is
a slight peak in between the main dumbbells (at about y = 3.5 Å in Fig. 7.5). This
is caused by the tails of the probe (compare to Fig. 3.13).

Figure 7.6 shows the magnitude of the electron wave function |ψ(x, y)| of the
focused probe as it is passing through the specimen. The probe was positioned at
an offset of (8 Å, 10 Å) with (0, 0) being in the lower left corner of the image.
Although the initial probe is smooth and round the atomic columns of the specimen
again attract the imaging electron which get channelled into the atomic columns.
After a thickness of 200 Å (Fig. 7.6b) the electron distribution in the probe can get
fairly distorted by the specimen.

The actual (simulated) ADF-STEM images calculated using the multislice
method are shown in Fig. 7.7. These images require a multislice calculation for
each point (or pixel) in the image. To save computer time only 32 × 32 pixels
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Fig. 7.5 Sampling test for ADF-STEM of 110 GaAs (40 Å thick) at an electron energy of 200 keV.
The curve shows the ADF signal in a vertical line through pairs of Ga and As atoms. The optical
parameters were Cs = 0.7 mm, Δf = 365 Å, with an objective aperture of 10.37 mrad (optimum
conditions). The ADF detector covered 40–175 mrad. The solid curve is for a super cell size of
8a0 × 6b0 with 1024 × 1024 pixels and the circles are for a super cell size of 6a0 × 4b0 with
512 × 512 pixels. The agreement between the two curves indicates that the sampling is sufficient

in one unit cell were calculated, and the unit cell was duplicated to fill the same
area as the BF-CTEM simulation (Fig. 7.4). The specimen potential and electron
wave function were each sampled with 512 × 512 pixels. The effective extinction
distance for scattering to high angles (as on the ADF detector) is much larger
than that for low angle scattering, which makes the ADF-STEM image much less
sensitive to specimen thickness in the way that BF phase contrast is (compare to
Fig. 7.4). The atomic columns are imaged as white in both the 40 Å (Fig. 7.7a) and
200 Å (Fig. 7.7b) images. The dumbbells are nearly resolved in these images. The
magnitude of the ADF signal increases with thickness but there is not a contrast
reversal as there was in BF phase contrast. The price paid for this improvement in
image interpretation is a much smaller overall signal.

7.1.3 Channeling

When the specimen is aligned along a major zone axis columns of atoms line up in
a row along the optic axis. This is usually desirable because the atom columns may
be imaged in their corresponding atomic location (in the 2D projection). As the
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Fig. 7.6 The calculated intensity distribution in the electron probe as it passes through 110 GaAs
at an electron energy of 200 keV. (a) 40 Å thick and (b) 200 Å thick. The optical parameters were
Cs = 0.7 mm, Δf = 365 Å, with an objective aperture of 10.37 mrad (optimum conditions). The
super cell size had dimensions of 6a0 × 4b0 with 512 × 512 pixels. The range of each image is
(a) 0.0–15.7, (b) 0.0–11.2 (white is a larger positive number). The scale bar in (a) is 5 Å

Fig. 7.7 Calculated ADF-STEM images of 110 GaAs at an electron energy of 200 keV for a
thickness of (a) 40 Å and (b) 200 Å. The optical parameters were Cs = 0.7 mm, Δf = 365 Å,
with an objective aperture of 10.37 mrad (optimum conditions). The specimen super cell size had
dimensions of 6a0 × 4b0 with 512 × 512 pixels. The image was calculated as 32 × 32 pixels (in
one unit cell) and periodically replicated to 192 × 128 pixels for display. Black is (a) 0.0053, (b)
0.021 and white is (a) 0.065, (b) 0.179, where the total incident beam current is one. The scale bar
in (a) is 5 Å

electrons travel through the specimen they tend to channel along these atomic
columns in a process called channeling as is already evident in Figs. 7.2 and 7.6.
This name can also apply to ion scattering in which the ions travel through the
hollow space between atomic columns. Electrons are negatively charged and are
attracted to the positive charge on the nucleus, so they tend to get pulled into
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the atomic columns and channel down a narrow channel that can be very small. The
channeling width can be smaller than the outer electron shell in the atom and have
a significant effect on low loss EELS (electron energy loss spectroscopy) signals
(Kirkland [274]).

One advantage of a simulation is the ability to display signals that are not
normally accessible in a real experiment. Figure 7.8a shows the electron intensity
along a row of atom pairs in 110 GaAs versus depth in the specimen (vertical
direction) in an y, z plane (along a vertical line in Fig. 7.7) for an incident plane
wave. An incident uniform plane wave is incident at the bottom of the image and
exists the specimen at the top of the image (the electron wave is traveling up in this
particular image). The channeling peak intensity increases significantly about half
way through this specimen and then spreads out again as it travels further through
the specimen. Channeling will oscillate with specimen thickness. The channeling
peak will form (or oscillate) quicker with heavier atoms (and atom density along the
beam) and lower electron energy. This particular example was chosen to reasonably
fit on the page (low energy so it oscillates in a short distance). Channeling occurs in
both fixed beam (CTEM) and scanned probe (STEM).

Figure 7.8b shows the channeling for an incident aberration correct probe placed
in between atom pairs. The probe slowly gets pulled onto the atom columns as it
passes through the specimen. Figure 7.8c is the same as (b) but with a saturated
gray scale to bring out the low intensity portion of the image. If the atomic columns
are close enough, the channeling peak may oscillate between adjacent columns with
thickness (Hovden et al. [213]).

Channeling is sometimes an annoyance, but can be used to advantage. If the
specimen (substrate) thickness is chosen so that the channeling peak is sharp and
intense at the exist surface any atoms deposited on the exit surface will be strongly
imaged only if they are on atomic columns but not in between, which may help
distinguish where these atoms are.

In the Bloch wave picture, the electron eigenfunctions (or eigenvectors) have a
high density near the atomic columns. In a two-dimensional plane perpendicular
to the beam direction the electrons appear as states loosely bound to the atomic
columns much like the lower energy atomic electrons are bound to the nucleus (but
in this case the high energy beam electrons are bound to the screened nucleus).
These states can be identified using atomic quantum numbers 1s, 2p, etc. (Kambe
et al. [252] and Buxton et al. [53]) with similar symmetry. These eigenfunctions
indicate a preference for propagation along the atomic columns (channeling).
Pennycook and Jesson [399] were able to develop an intuitive understanding of
ADF-STEM imaging based on the s-state eigenstates for well separated atomic
columns. Anstits et al. [17, 18] have shown that more states are needed for high
resolution if the atomic columns are close. An atomic sized probe (with aberration
corrector) placed on one atomic columns with another atomic column close by may
oscillate between columns as it propagated through the specimen.
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Fig. 7.8 Calculated electron intensity in 110 GaAs at an electron energy of 100 keV. (a) Plane
wave incident. (b) Aberration-corrected probe in between atom pairs (CS3 = CS5 = Δf = 0,
objective aperture of 25 mrad). (c) Same as (b) but with smaller gray scale range to bring out
the low intensity portion of the image (at top). The specimen super cell size had dimensions of
6a0 × 4b0 with 512 × 512 pixels. The total thickness (bottom to top) was 100 Å and the scale bar
in (a) is 5 Å
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7.2 Silicon Nitride

Silicon nitride (specifically the β phase, β-Si3N4) has a hexagonal unit cell
(Wyckoff [539]) as shown in Fig. 7.9. Each side of the unit cell is 7.606 Å and there
are two layers with a total repeat length of 2.909 Å (perpendicular to the plane of
the paper in Fig. 7.9). The hexagonal unit cell contains 14 atoms (6 silicon atoms
and 8 nitrogen atoms).

Silicon nitride is an example of a more complicated unit cell that does not have
rectangular symmetry. The multislice method of image simulation is most efficient
when the FFT is used and the FFT is separable in x and y. This means that an FFT
version of the multislice method works best with a rectangular unit cell. To calculate
this specimen it is best to find a larger unit cell with rectangular symmetry. One
possible choice is shown in Fig. 7.10. The rectangular unit cell contains 28 atoms
(12 silicon atoms and 16 nitrogen atoms). This particular specimen is easy to
redefine a larger rectangular unit cell but an arbitrary specimen may be more
difficult to describe this way. However this step is required when using a multislice
implementation using the FFT (required for an efficient calculation). Each specimen
may require a different strategy to generate an equivalent rectangular unit cell.

Figure 7.11 shows the electron wave function after passing through about 50 Å
of the specimen. The magnitude in (a) again shows that the electrons are attracted
to the positively charged atomic nuclei and the specimen is not a pure phase object.
The exit wave function, shown in (b) and (c) has both a strong real part and strong
imaginary part. The complex transfer function of the objective lens can mix these
two components in rather nonintuitive ways.

Figure 7.12 shows a calculated defocus series of silicon nitride with a thickness
of 49.5 Å (stacking sequence 17(ab)). The specimen was modeled as two layers
with a stacking sequence of ababa . . . . The wave function and potentials were
sampled with 256 × 256 pixels with a size of 38.03 × 39.52 Å or 5a0×3b0
using the rectangular unit cell defined in Fig. 7.10 (maximum scattering angle of
54 mrad). Partial coherence was modeled using the transmission cross coefficient
(see Sect. 5.4.3). The positions of the silicon atoms are initially black in Fig. 7.12a

Fig. 7.9 The 001 projection of the hexagonal primitive unit cell of silicon nitride (β-Si3N4). The
open circles are the positions of the nitrogen atoms and the filled circles are the positions of the
silicon atoms. The a layer is on the left, the b layer is in the middle, and the total projection is on
the right. The solid line indicates the unit cell boundaries. The side of the unit cell is 7.606 Å
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Fig. 7.10 The unit cell of silicon nitride (β-Si3N4) expanded to fill a rectangular area suitable for
simulating using the multislice method with rectangular FFTs. The open circles are the positions
of the nitrogen atoms and the filled circles are the positions of the silicon atoms. The position
of the primitive hexagonal unit cell is shown as a dashed line. The unit cell has dimensions of
a0 = 7.606 Å, and b0 = 13.174 Å, There are two layers each with a thickness of 1.4545 Å

but reverse contrast as the defocus is changed, becoming white in Fig. 7.12b, c.
Figure 7.13 shows the Scherzer focus image for two different thickness of the
specimen. The apparent contrast of the silicon atom positions has reversed (black
has become white). The sign of the contrast will change periodically with defocus
for a given thickness and also periodically with thickness for a given defocus,
making image interpretation very difficult. Image simulation is one means of sorting
out what is going on in the image.

An aberration-corrected instrument will be corrected to some maximum angle or
to some maximum order of aberration (or combination of these). The corrector will
add a large negative CS3 to balance a large positive CS3 from the round objective
lens. If the corrector is good to third order there will still be fifth order aberrations
(CS5 plus all of the parasitic aberrations), which may be minimized to some extent.
Just as Scherzer used a lower order aberration (defocus) to partially compensate
for the higher order CS3 aberration, the fifth order aberrations can be partially
offset by the third order aberrations. For simplicity assume that all of the parasitic
aberrations (m �= 0) like C32, etc. have been corrected to zero through fifth order.
Phase contrast in BF-CTEM and BF-STEM actually require significant amounts
of the three m =0 aberrations (C10 = −Δf , C30 = CS3, and C50 = CS5) with
alternating signs to produce a π/2 phase plate in the outer regions of the objective
aperture to interfere with the unshifted beam in the center of the objective aperture
(see Fig. 3.4). A third or higher order corrector should be able to drive the total
third order spherical aberration (CS3 = C30) negative to partially offset a positive
fifth order spherical aberration (CS5 = C50). Similar pairs can be found in most of
the parasitic (m �=0) aberrations (left out from this discussion for simplicity). For
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Fig. 7.11 The 200 keV electron wave function after passing through 49.5 Å of 001 silicon nitride
(β-Si3N4). (a) Magnitude |ψ(x, y)| (b) real part of ψ(x, y) and (c) imaginary part of ψ(x, y). The
area of each image corresponds to 5 × 3 unit cells of the type shown in Fig. 7.10. The numerical
range of each image is (a) 0.43–2.84, (b) −1.93–1.04 and (c) 0.01–2.27 (white is a larger positive
number) The scale bar in (a) is 10 Å

example, if CS5 = 50 mm is present at 200 kV, then making third order spherical
CS3 = −0.059 mm and defocus Δf = −C10 = −136 Å allows the transfer function
to go out to better than 1 Å (35 mrad) as in Fig. 3.4.

Figure 7.14 shows Si3N4 calculated for an aberration-corrected BF-CTEM with
three different thickness using 512 by 512 pixels (maximum angle 108 mrad) and a
slice thickness of 1.4545 Å. The corrector is assumed to be good to fifth order out
to an angle of 35 mrad. Figure 7.14a is very thin (may not be possible in practice)
and yields a good representation of the actual specimen structure. As the specimen
gets thicker there is only a small change in the image. The atoms mostly stay white.
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Fig. 7.12 Calculated CTEM defocus series of 001 silicon nitride (β-Si3N4), 49.5 Å thick at a beam
energy of 200 keV (Cs = 1.3 mm, obj. apert. = 12 mrad, condenc. apert = 0.75 mrad, defocus
spread = 100 Å). The defocus values are (a) 700 Å (Scherzer focus), (b) 900 Å, (c) 1100 Å and (d)
1300 Å. The scale bar in (a) is 10 Å. The area of each image corresponds to 5 × 3 unit cells of the
type shown in Fig. 7.10. Silicon atom positions appear black in (a)

At this high resolution the depth of focus is only about 30 Å (approximately the
resolution divided by the angle), which is less than the specimen thickness. In
this calculation defocus is referred to the exit surface. It’s not clear which plane
is the optimum in this situation. Depth of focus becomes a significant problem as
resolution increases. Jia et al. [246], Tillmann et al. [492] and Urban [497] have
discussed other possible uses for negative CS3.

Figure 7.15 shows a simulated ADF-STEM defocus series of silicon nitride under
similar conditions to that in Fig. 7.12 except that the objective aperture was fixed at
10.37 mrad consistent with Scherzer conditions for a focused probe. The super cell
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Fig. 7.13 Calculated CTEM images for two different thickness of 001 silicon nitride (β-Si3N4), at
a beam energy of 200 keV (defocus of 700 Å, Cs = 1.3 mm, obj. apert. = 12 mrad, condenc. apert
= 0.75 mrad, defocus spread = 100 Å). The specimen thickness was (a) 102 Å (35(ab) layers), and
(b) 151 Å (52(ab) layers) The scale bar in (a) is 10 Å. The area of each image corresponds to 5 × 3
unit cells of the type shown in Fig. 7.10

size was 4a0×2b0 (or 30.4 × 26.3 Å) with 512 × 512 pixels to allow a maximum
scattering angle of 140 mrad (increased from the CTEM case in Fig. 7.12). The
electron wave function was also sampled with 512 × 512 pixels. To save computer
time only the image in one rectangular unit cell was calculated with 32 × 64 pixels
and replicated to fill the same area Fig. 7.12 for comparison. The silicon atom
columns appear as white dots in Fig. 7.15a and do not reverse contrast unlike the
BF phase contrast image, however there are still significant artifacts in the image
that appear as the defocus is increased from Scherzer defocus (Δf = 700 Å).
The artifacts are consistent with the tails of the probe. ADF-STEM is less sensitive
to changes in defocus (than BF phase contrast) but there are still significant artifacts
produced when defocus is changed. Figures 7.12 and 7.15 clearly indicate that the
interpretation of a high-resolution image is not always straightforward in either BF-
CTEM or ADF-STEM. Image simulation is one approach to verify that the image
is interpreted correctly.

7.3 Two-Dimensional Materials (MoS2)

MoS2 is a member of the family of transition metal dichalcongenides (TMD). In a
bulk sample it is composed of thin layers stacked on top of each other with a large
separation distance. Each layer is only 2 or three atoms thick and can exist as a
separate nearly 2D structure. There has been some interest in using this material for
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Fig. 7.14 Calculated aberration-corrected BF-CTEM images for three different thickness of 001
silicon nitride (β-Si3N4), at a beam energy of 200 keV (defocus of −136 Å, CS3 = −0.059 mm,
CS5 = 50 mm, obj. apert. = 35 mrad, defocus spread = 20 Å). The specimen thickness was (a)
23 Å, (b) 102 Å, and (c) 151 Å. The scale bar in (a) is 10 Å. The area of each image corresponds to
5 × 3 unit cells of the type shown in Fig. 7.10. All other aberrations assumed to be zero

2D electronic devices (for example, Li et al. [313]), and imaging these 2D materials
in the electron microscope may also be of interest.

The S atoms in MoS2 (the 2H lattice) form a basic hexagonal crystal (unit cell
a = b = 3.161 Å, c = 12.295 Å, α = β = 90◦, γ = 120◦) with a single
Mo atom near the center of each triangle (position (2/3, 1/3, 0)) as described by
Schönfeld et al. [449]. There are two layers of S atoms, above and below the layer
of Mo atoms (±0.127c). This unit cell is not suitable for easy calculation but can be
converted into a rectangular unit cell by combining approximately two hexagonal
unit cells. The resulting atomic coordinates are listed in Table 7.3. A drawing of
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Fig. 7.15 Calculated ADF-STEM defocus series of 001 silicon nitride (β-Si3N4), 49.5 Å thick at
a beam energy of 200 keV (Cs = 1.3 mm, obj. apert. = 10.37 mrad). The defocus values are (a)
700 Å (Scherzer focus), (b) 900 Å, (c) 1100 Å and (d) 1300 Å. The scale bar in (a) is 10 Å. The
area of each image corresponds to 5 × 3 unit cells of the type shown in Fig. 7.10. Silicon atom
positions appear white in (a)

the structure projected along the c axis (along the z direction or the optic axis in
the microscope) is shown in Fig. 7.16 with one rectangular unit cell outlined in the
upper left. The basic hexagonal unit cells may also be combined into a sequence
of open hexagonal structures outlined in the lower left (not the same as a single
hexagonal unit cell).

A single layer of this specimen is fairly well described by the simple incoherent
images model (Eq. 3.70) because the specimen is too thin to have multiple scattering
and the atoms are not very heavy. This image model is fast and easy to calculate and
flexible enough to add a variety of other features. If the incident beam current and
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Table 7.3 Atomic
coordinates (in Å) for a unit
cell of MoS2 converted to a
rectangular unit cell (from
hexagonal form) for
calculation

Atom x y z

S 0 0 0

S 1.580500 2.737506 0

Mo 1.580500 0.912502 1.561465

Mo 0 3.650008 1.561465

S 0 0 3.122930

S 1.580500 2.737506 3.122930

The unit cell size is a0 = a = 3.161 Å, b0 =
a
√

3 = 5.475013 Å, and c = 12.295 Å

Fig. 7.16 Structure of MoS2 projected along the c axis. Squares are Mo atoms and circles are S
atoms. One hexagonal unit is outlined with a solid line in the lower left, and the rectangular unit
cell is outlined with a dashed line in the upper left

dwell time per pixel (point in the scan) are known, then Poisson electron counting
noise can be calculated. This is the theoretical best that might be achieved with an
ideal detector capable of single electron counting (some are but many are not). An
actual experimental image may include a variety of other noise sources in practice,
but it is still of interest to estimate what might be achieved in a minimum noise
result including only counting noise.

Programming a Poisson distributed random number generator is actually not
trivial. To be correct, what is calculated should be referred to as a pseudo random
number generator not a true random number generator because it is reproducible
in a program but has most of the important properties of random numbers. Most
random number generators use clever integer arithmetic and/or bit manipulations
to generate a uniformly distributed random number. Random numbers for many
other continuous probability distributions can be generated using the basic laws
of probability. However, Poisson random numbers are positive integer values not
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continuous variable so require some extra steps. Atkinson [1] has given a review of
several different method.

An ADF-STEM image of MoS2 is shown in Fig. 7.17. The specimen is most
likely radiation damage sensitive so a low beam energy of 60 kV is used. Fig-
ure 7.17a is an ideal image with no noise and no aberrations. Figure 7.17b, c includes
noise and Fig. 7.17c also includes small amount of high order aberrations which will
be the most difficult to correct and hence likely to still be present. The main effect of
small high order aberrations in Fig. 7.17c is to significantly reduce the peak signal
with only a small increase in the apparent size of each atom. All images in this figure
include a modest source size and defocus spread. This result is similar to what has
been experimentally observed (for example, Kang et al. [254] and Li et al. [312]).

7.4 Reciprocity and Z-Contrast

Due to reciprocity, STEM and CTEM are equivalent under certain circumstances
(Sect. 2.4). ADF-STEM usually has a simple image interpretation called Z-contrast
in which the image intensity varies uniformly with atomic number Z, with little
variation with thickness (i.e., it can be thought of as an incoherent imaging process).
The price paid is that the signal is small. BF-CTEM has a stronger signal but
varies with thickness in a complicated, often nonintuitive manner (it is more of a
coherent image process). Reciprocity means that CTEM with a large illumination
angle (condenser angle) equal to the detector angles in ADF-STEM should produce
Z-contrast similar to ADF-STEM. A large condenser angle effectively washes out
the coherence making this mode incoherent BF. Detector angles can be very large
(20–200 mrad) compared to illumination angles (up to a few mrad). Most condenser
lenses will probably not handle 100 mrad or more but an equivalent signal might be
obtained by making illumination angles the same as the hole in the ADF detector.
The sum of the signal on the ADF detector plus the signal in the hole must sum to
the total beam intensity I0 (neglecting backscattered electrons) which is constant in
most cases. BF-CTEM with a large illumination angle is approximately I0 minus the
ADF signal (chromatic aberration and inelastic scattering enter slightly differently,
so this analogy may not be exact).

Figure 7.18 shows calculated (with multislice) ADF-STEM and BF-CTEM
images of 110 silicon (Z = 14) with a few rows of Si atoms in the middle replaced
with As (Z = 33) atoms. In the middle, every other Si atom has been replaced
with As in the equivalent Ga atom position in GaAs. This specimen is not practical
to fabricated and if it were, there would be some lattice relaxation which is also
ignored. This specimen is for demonstration purposes only, and conveniently has
a large scale structure with different atomic number atoms. Figure 7.18a shows
the ADF-STEM image with the higher atomic number As atom columns as bright
white spots (Z-contrast). Figure 7.18b shows a typical BF-CTEM image with not
much contrast between heavy (As) and light (Si) atoms. Figure 7.18c shows a
BF-CTEM with a large condenser angle equal to the size of the whole in the
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Fig. 7.17 Calculated images of MoS2 in ADF-STEM at 60 kV, obj. apert. 30 mrad, source size
0.5 Å, and defocus spread of 50 Å. (a) No aberrations and noise free, (b) no aberrations with
Poisson counting noise for 20 pA beam current and dwell time of 10µs, (c) same as (b) but with
C45a = 0.5 mm and C56a = 40 mm. The image range is (a) 0.001–0.024, (b) 0–46 electrons and
(c) 0–29 electrons. (b) and (c) are slightly saturated to improve visibility. Bright white spots should
be Mo atoms and gray spots should be S atoms. The scale bar is 5 Å.

ADF-STEM image. For each position in the condenser aperture (consistent with
periodic boundary conditions) a plane wave (with a tilt determined by position in
the condenser aperture) is propagated through the specimen and forms an image
(see Sect. 6.10.3). The intensity of all images is added (incoherently). There is an
assumption that the condenser aperture is incoherently illuminated which is usually
the case. The resulting BF-CTEM image is very similar to the ADF-STEM image
except with reverse contrast. The heavier As atoms are now black instead of white as
in the ADF-STEM image due to the inverted contrast as discussed above. If ADF-
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Fig. 7.18 Reciprocity and Z-contrast. Calculated image of 110 silicon (512×512 pixels and 52 Å
thick) with two rows of As atom columns in the middle. 200 keV, CS3 = 0.7 mm, Δf = 510 Å. (a)
ADF-STEM, detector angle 30–100 mrad. (b) BF-CTEM with parallel illumination. (c) BF-CTEM
with large illumination angle of 0–30 mrad. The range (white is a larger value) of each image is (a)
0.0021–0.0542, (b) 0.1547–2.2018, (c) 0.1684–0.1867. The scale bar is 5 Å

STEM is said to be Z-contrast, then this form of incoherent BF might be said to
be inverted Z-contrast. Z-contrast is possible at least in principle in BF-CTEM
utilizing reciprocity. Similar calculated results were shown by Kirkland [272]. This
effect has been tested in STEM with two different detectors (unpublished) but has
not been tested in BF-CTEM so far it seems.

7.5 CBED Simulations

The CBED or convergent beam electron diffraction pattern is formed when a
small focused probe is incident on the specimen. The diffraction pattern is from a
microscopic area of the specimen and can also be referred to as the microdiffraction
pattern. When the illuminating radiation is convergent (as required to focus on a
small area of the specimen) then each diffraction spot is enlarged to the same size
as the illumination cone and becomes a disk instead of a spot. The angular diameter
of each disk is the same as the angular spread of the incident beam. In the case of
the STEM each diffraction disk is the same size as the objective aperture.

The sampling error test (as in Table 7.2 and Fig. 7.5) are only an internal
consistency test and do not test for systematic errors in the simulation theory or
program implementation. The only real test of the simulation is a comparison
to actual experimental data. Once the simulation software and theory have been
verified by a detailed comparison to one or more experiments, then it can be used to
predict other unknown situations.

Figure 7.19 shows experimentally recorded CBED patterns from 111 silicon at
an electron energy of 100 keV (from Kirkland et al. [280]). In this case the probe
(about 2.7 Å diameter) is larger than the lattice spacing (1.92 Å) so the CBED disks
do not overlap and the lattice is not observable (Spence [472]). The outer (white)
ring is the HOLZ line. It is thin because the Ewald sphere intersects each diffraction
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Fig. 7.19 Experimental CBED patterns of 111 silicon recorded in an HB501A STEM at 100 keV,
Cs = 3.3 mm, with an objective aperture of 8 mrad (Scherzer conditions). The specimen thickness
was determined to be (a) 198 Å, (b) 273 Å, (c) 489 Å, (d) 1270 Å (±30 Å). Reprinted from
Kirkland et al. [280] with the permission of The Minerals, Metals and Materials Society

disk at a steep angle. The patterns were recorded by photographing the diffraction
screen (phosphor screen) with a 35 mm camera (using Kodak Plus-X film, chosen
for its long linear region) with an exposure of 2 min. The dynamic range of the
CBED pattern is too large to display easily so some old fashioned image processing
was applied to the central seven disks (they were photographically burned in by a
factor of six when the final prints were made in the dark room).

A CBED calculation requires only one multislice calculation like in a BF-CTEM
calculation. The initial wave function is a focused probe (instead of a plane wave)
and the final image is Fourier transformed into the far field to get a diffraction
pattern. Silicon 111 was modeled as a layered structure with a stacking sequence of
abcabca . . . . The slice thickness (one layer per slice) is 3.135 Å, with a total repeat
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length of 9.405 Å. The wave function and specimen potential were sampled with
512 × 512 pixels and a super cell size of 53.5 × 53.2 Å. A library of CBED patterns
was calculated for various thickness in the range 100–1500 Å at intervals of 10–
50 Å. Each experimental CBED pattern was visually matched to a calculated CBED
pattern to determine the specimen thickness. It was possible to distinguish the
thickness to an accuracy of about ±30 Å by observing the structure in the low order
diffraction disks. The best match is shown in Fig. 7.20 recalculated with a higher
resolution of 1024×1024 pixels and 65.2732 Å by 66.504 Å (max. angle 190 mrad)
needed for the thick specimen in (d). Only the center portion of the diffraction
pattern is shown for simplicity. This calculation does not include temperature (no
atomic vibrations) so is missing a few features. Several more rings (HOLZ lines)
are visible in the calculation and there are no Kikuchi line (radial spokes). In a more
complete calculation the extra HOLTS lines disappear and the Kikuchi lines appear
(see the next section).

An EELS (electron energy loss spectroscopy) spectra was recorded for the same
region that each CBED pattern was recorded. The ratio of the integrated signal in
the first plasmon peak to the intensity in the zero loss peak is a good measure of the
thickness of the specimen. Plotting the EELS ratio versus the thickness determined
by matching the CBED simulation yielded a straight line with a slope indicating a
plasmon mean free path of 1297±25 Å (with an EELS spectrometer collection angle
of 8 mrad). The subjective agreement between Figs. 7.19 and 7.20 (overall features
and the pattern of dark lines in the low order disks, taking into account the different
intensity display scales used) and the measurement of the plasmon mean free path
indicate a good agreement between the multislice simulation theory and an actual
experiment. This particular experiment ignored the thermal motion of the atoms in
the specimen. Later experiments by Loane et al. [317] yielded a plasmon mean free
path of 1207 Å including the effects of thermal atomic vibrations. The faint radial
bands are called the Kikuchi bands and are also absent when thermal vibrations are
ignored (as in Fig. 7.20).

7.6 Thermal Vibrations of the Atoms in the Specimen

All of the simulations considered so far have treated the atoms in the specimen as
completely stationary. Most electron microscopy is done at room temperature of
about 300◦K (some microscopes can be equipped with heating and cooling stages).
At room temperature the atoms in the specimen vibrate slightly. These atomic
vibrations are quantized and the quantum unit of energy is called a phonon similar
to the quantum unit of electromagnetic energy, the photon. Atomic vibrations are
small compared to a typical interatomic distance so this effect is expected to be
small but can lead to some interesting effects. In particular the thermal vibrations
lead to a diffuse background intensity (in the diffraction pattern) in between the



7.6 Thermal Vibrations of the Atoms in the Specimen 221

Fig. 7.20 Calculated CBED patterns of 111 silicon at 100 keV, Cs = 3.3 mm, with an objective
aperture of 8 mrad (Scherzer conditions). The specimen thickness was determined to be (a) 198 Å,
(b) 273 Å, (c) 489 Å, (d) 1270 Å (±30 Å). Each pattern is displayed on a logarithmic scale. The
maximum scattering angle is 190 mrad (A higher resolution version of what was given in Kirkland
et al. [280])

normal allowed diffraction positions. This type of scattering may be referred to as
thermal diffuse scattering or simply TDS.

Typical optical phonons have a frequency no greater than about 1012 to 1013 Hz
(Kittel [286]), and acoustic phonons are significantly lower frequencies. The
imaging electrons in the microscope are traveling at about one half the speed of
light (1.5 × 1010 cm/s) or greater. At this speed it takes only about 0.7 × 10−16 s.
to traverse the specimen which is much smaller than the period of oscillation of the
atoms in the specimen. While the imaging electron is inside the specimen the atoms
do not change their position significantly. The imaging electrons see the atoms as
stationary but slightly offset from their normal lattice positions. The final image or
diffraction pattern is made up of the average of many different imaging electrons.
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The typical current in the microscope is small enough that the time between two
successive imaging electrons passing through the specimen is long compared to
the period of oscillation of the thermal phonons in the specimen. Therefore each
successive imaging electron sees a slightly different configuration of atoms in the
specimen. Each configuration of atoms is uncorrelated with all other configurations
so the average over atomic configurations should be done incoherently.

The final image is the time average of many oscillations of the phonons in the
specimen. However, only the imaging electron intensity and not the wave function
can be averaged. This means that the time average must be performed in the
image plane (or diffraction plane if simulating a diffraction pattern) and not in
the specimen plane. The detection process (film, CCD, etc.) converts the electron
wave function into an intensity (square magnitude of the wave function). It is not
appropriate to replace the atomic potential of the specimen by a time averaged
potential (or equivalently apply a Debye–Waller factor to the atomic potential)
because the phase of the imaging electron wave function must be carried through
to the detector plane. It is only in the detector plane that the wave function can be
converted to an intensity.

A general theory of imaging and diffraction in the presence of thermal vibrations
can be rather involved (for example: Hall and Hirsch [185], Cowley and Pogany
[80], Cowley and Murray [79], Rez et al. [420], Cowley [76], Allen and Rossouw
[11], Wang and Cowley [523, 524], Wang [519–522], Dinges and Rose [97],
Jesson and Pennycook [245], Amali and Rez [14], Mitsuishi et al. [351], Dwyer
and Etheridge [107], Croitoru et al. [86]). The theory of TDS scattering of X-
rays has been thoroughly reviewed by Warren [525] and is very similar to TDS
scattering of electrons. Although a theoretical analysis may be complicated, there
is however a simple if somewhat brute force approach to numerically simulate the
effects of thermal vibrations in the specimen. Given a list of atomic coordinates
in the specimen, offset the position of each atom by a small random amount
and then perform a normal multislice simulation to get an image or diffraction
pattern. Next repeat this process with a different random offset for each atomic
coordinate (each random offset should start from the original unperturbed atom
position, so the random offsets are not cumulative). The final image or diffraction
pattern is the intensity averaged over several different configurations of atoms
with different random offsets (average |ψ |2 and not ψ). This approach is called
the frozen phonon approximation (Loane et al. [316], Hillyard and Silcox [207]).
There is a similar method in condensed matter calculations with a similar name (for
example, Martin [333]) used to calculate phonon behavior but these two methods
seem to have appeared independently near the same time. The random offsets can
be generated using a random number generator with a Gaussian distribution which
is then equivalent to the Einstein model of the density of states for phonons (see,
for example, Kittel [286]). This method can also be labeled a Monte-Carlo method
because it uses a sequence of computer generated random numbers to perform a
simulation. Fan [124], Dinges and Rose [97], and Amali and Rez [14] have proposed
slightly different methods.
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When all of the atoms in the specimen have a slightly different offset the
specimen is no longer periodic in any direction. The specimen is technically
amorphous although there is still an approximate periodicity. This simulation
requires a different type of multislice simulation. Each slice of the specimen is
different so there is no advantage to precalculating the slices, storing them, and
reusing the transmission function of each slice (they cannot be reused). This type
of multislice simulation first reads in all of the coordinates (in practice the program
reads in only the coordinates for one unit cell and then replicates them for many
unit cells) and then adds a random offset for each coordinate. Then the atomic
coordinates are sorted by depth and cut into thin slices. The transmission function
for each successive slice is calculated (one at a time), applied to the transmitted
wave function, and then discarded because it cannot be used again.

7.6.1 Silicon 111 CBED with TDS

Thermal vibrations have the most visible effects on the diffraction pattern, gen-
erating a diffuse background intensity in between the normal diffraction spots.
The steps in a frozen phonon calculation are shown in Fig. 7.21. Each atom was
allowed to deviate from its normal lattice position with a Gaussian distribution and
an rms deviation of xRMS = 0.075 Å in each of three directions, consistent with
a measured Debye–Waller factor B at room temperature (Sears and Selly [451]),
xRMS = √

B/(8π2). This simulation models a CBED pattern (|Ψ (k)|2) of the
111 projection of silicon. The wave function and potentials were sampled with
512 × 512 pixels in an area of 34.6 × 33.3 Å (maximum scattering angle 183 mrad).
Figure 7.21a shows the CBED pattern without thermal displacements. Figure 7.21b
has one particular set of random offsets. The number of different configurations in
the average increases to 16 in Fig. 7.21d. Surprisingly, this is enough configurations
to produce a smooth pattern. This calculation is completely elastic and there is no
inelastic scattering.

This simulation in Fig. 7.21d should match the experimental CBED pattern in
Fig. 7.19c. However the scale was changed slightly to improve the sampling. The
faint white bands that travel radially outward from the center of the CBED pattern
are called the Kikuchi bands and are noticeably absent in the CBED simulation in
Fig. 7.20 without thermal vibrations, but are reproduced appropriately in Fig. 7.21.
Figure 7.22 shows the average intensity versus scattering angle including thermal
atomic vibrations. Notice that the intensity in between the diffraction peaks has
become nonzero. The main effect of thermal vibrations is to reduce the intensity
in the HOLZ lines and redistribute it more uniformly over the whole range of
scattering angles. The ADF-STEM signal integrates over this whole region so there
is only a small qualitative effect in the ADF-STEM image. The TDS should be
included in ADF-STEM for a good quantitative calculation but usually does not
have a qualitative effect on ADF-STEM image (Hillyard and Silcox [207]). Möbus
et al. [355] have also added TDS to simulations of BF-CTEM images and conclude
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Fig. 7.21 Monte Carlo simulation of the CBED pattern of 111 silicon (489 Åthick) including
thermal atomic vibrations (0.075 Å in each direction) at 100 keV (Cs = 3.3 mm, obj. aperture
8 mrad. Scherzer conditions). (a) has no thermal vibrations and the other images are the average
of successively more sets of random displacements (b) one set, (c) four sets, and (d) 16 sets. Each
pattern is displayed on a logarithmic scale. The maximum scattering angle is 183 mrad

that there is no significant effect for thin specimen as are typically used. Muller et al.
[365] have performed a more detailed simulation using a set of phonons accurately
generated from the measured band structure of the crystal and found that there was
no significant deviation from the simple Einstein model with a Gaussian distribution
of atomic coordinate offsets. Debye–Waller factors for many different materials can
be found in the literature (for example, Reid [412], Krishna and Sirdeshmukh [296]
and Schowalter et al. [450])
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Fig. 7.22 Azimuthal average of the scattered intensity in the simulated CBED diffraction pattern
including thermal atomic vibrations in 111 silicon as in Fig. 7.21d. The solid line includes thermal
vibrations and the dashed line does not (Fig. 7.21a)

7.6.2 Silicon 110 ADF-STEM with TDS

Generally speaking, the TDS scattering in crystalline specimens reduces the peak
intensity in the Bragg peaks on the ADF detector. A significant portion reappears
as a diffuse background in between the Bragg peaks, which is still integrated by
the ADF detector. Unless there are one or more strong Bragg peaks near the edge
of the detector then TDS scattering should not have a large effect on the ADF-
STEM image, although it should be included for a good quantitative comparison.
Figure 7.23 shows a line scan through the so-called dumbbells (atom col. pair) in the
110 projection of Si (1.36 Å spacing) calculated with and without thermal vibrations
(TDS scattering) for an aberration-corrected 100 keV STEM. This calculation used
512 by 512 pixels with a super cell size of approximately 20 Å in each direction and
a specimen thickness of about 100 Å. This super cell size includes scattering angles
(on the ADF detector) to 290 mrad. The TDS calculation was averaged over 32
phonon configurations. Both calculations include a source size of 0.5 Å (full width
half max.), calculated by convolving a 2D image (64 by 256 pixels) with a Gaussian
of the appropriate width.

In the top graph (of Fig. 7.23) the atom pairs are nicely resolved and the TDS
scattering does not have much effect (overall curve moved up slightly). There is a
slight asymmetry due to the stacking order in the two columns, which will likely
disappear in practice with surface relaxation of the crystal. The systematic error in
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Fig. 7.23 Calculated aberration-corrected ADF-STEM images for the 110 projection of silicon
with (solid line) and without (dashed line) TDS scattering, at a beam energy of 100 keV (defocus
of 0 Å, CS5 = 0, CS3 = 0, obj. apert. = 35 mrad, source size 0.5 Å). The specimen thickness was
100 Å. The area of each image corresponds to 5 × 4 unit cells of the type shown in Fig. 5.15. The
top graph has a detector of 80–200 mrad and the bottom graph has a detector of 120–280 mrad

this calculation may be about the size of the difference between these two curves
so there may not be a real difference in the two curves. The bottom graph includes
only high angles on the detector and the TDS scattering has the effect of reducing
the overall signal which is a little unexpected. It is likely that there is a strong set
of Bragg peaks near the inner angle of the detector (the FOLZ line) whose intensity
gets scattered off the detector and disappears. It is not always a good idea to restrict
the detector to very high angles. Usually it’s best to get the FOLZ nicely centered
on the detector.

7.7 Specimen Edges or Interfaces

Calculating images of edges and interfaces presents some special problems. The
specimen is no longer really periodic. The so-called wrap-around error causes an
extra edge or interface to be introduced (see Fig. 6.13). Figure 7.24 shows the image
of a sharp edge of copper. There is a pure crystal of copper in the left half and
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vacuum in the right half with an atomically sharp edge in the middle. Copper is a
simple FCC (face centered cubic) structure with a unit cell size of 3.61 Å.The edge
could also be an interface between two different materials, with the same problem.
There is one intended edge (or interface) in the center and also an unintended
interface on the left and right edges due to the wrap-around effect. The effects of
this edge are just visible along the right edge of each image. Usually only the middle
interface is of interest and typically only the middle portion of the image (with left
and right edges removed) is shown. However the whole image is shown here to help
understand the situation.

The trick to calculating an edge or interface which is not strictly periodic using an
FFT based multislice method in which the specimen is required to be periodic in the
two-dimensional image plane is to make the specimen extra long in the non-periodic
direction. The specimen does not have to be periodic along the beam direction (into
the page in this example). If it is long enough, the two interfaces are far apart and
do not interfere with each other. The new unit cell is called a super cell. In this
example the super cell is 72.2 by 36.1 Å and was sampled with 512 by 256 pixels
for BF-CTEM and 1024 by 512 pixels for ADF and confocal STEM. The specimen
was 50.54 Å thick (thin to reduce thickness effect for simplicity which also reduces
the computer time). The STEM probe was sampled with 512 by 512 pixels (which
effectively slides around on the larger specimen). Using a smaller sampling for the
probe reduces the required computer time (which is significant for this calculation).
The final image has 512 by 256 pixels. The atomic columns should appear dark in
(a) and (c) and white in (b).

The ADF-STEM image (Fig. 7.24b) is incoherent and the edge appears sharp
(white dots at the atom positions). The BF-CTEM image (Fig. 7.24a) is coherent and
a well-known Fresnel fringe (oscillations) appears at the edge (both edges) which
makes it difficult to determine the exact location of the edge. This particular confocal
image is well behaved although confocal is frequently not well behaved (in part
because there are twice as many parameters to go wrong).

7.8 Biological Specimens

The multislice method is capable of handling specimens that are nearly amorphous.
Each slice of the specimen is calculated independently of the other slices so
the specimen can be completely amorphous in the beam direction (z as used
in this book). Using a discrete Fourier transform (the FFT) in two dimensions
perpendicular to the beam direction forces the unit cell to be repeated infinitely in
those two directions (x, y as used in this book). If the specimen is somehow bounded
(such as a nano particle or macromolecule) and embedded in a larger supercell such
that the repeated copies of the specimen are far apart so they do not interfere with
each other, then amorphous objects may be calculated using the multislice method
(see Fig. 6.12).
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Fig. 7.24 Calculated images of an edge of copper at 200 kV. (a) BF-CTEM image, (b) ADF-
STEM image, (c) confocal STEM with a detector radius of 2 Å, and the same parameters for the
collector lens as the objective lens. Cs = 0.7 mm a defocus of 700 Å, and an objective aperture of
12 mrad. The scale bar is 10 Å

Biological macromolecules or microorganisms are good examples of (nearly)
amorphous particles (the method discussed next should also apply to inorganic
nano-particles as well). The Protein Data Bank (PDB) is an on-line depository of
structure data for proteins and related molecules, many of which come from X-ray
diffraction studies of crystallized specimens. Each structure data file in the PDB
contains a list of atomic coordinates (in three dimensions) that can be converted
to a format used here for a multislice calculation (as done by Wall [517]). Some
images of glutamin synthetase (with thallium, PDB identification 1F1H.pdb, Gill
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Fig. 7.25 Calculated images of glutamin synthetase (1F1H.pdb, Gill and Eisenberg [156]) using
multislice (2 Å slices). (a–c) BF-CTEM, (d–f) ADF-STEM. (a, d) have no support (not physically
possible), (b, e) have a 20 Å amorphous carbon support and (c, f) have 120 Å of amorphous ice
support. Electron beam energy 300 keV, CS = 1.0 mm, Δf = 550 Å (at center of specimen), obj.
apert. 13 mrad (BF) and 10 mrad (ADF). (a–c) also have an illumination angle of 0.1 mrad and
defocus spread of 100 Å, except Δf = 15,000 Å and defocus spread = 200 Å in (c). Radiation
damage and low beam dose noise are ignored for simplicity. The scale bar is 50 Å

and Eisenberg et al. [156]) are calculated in Fig. 7.25. This molecule has 45,564
atoms and is projected along the z axis as defined by the PDB file (which seems to be
along an interesting direction). Several major effects will be ignored for simplicity.
Radiation damage is frequently the primary limiting factor in images of biological
specimens. The total beam dose must be limited to some small value. The low dose
generates a lot of noise in the image. Part of the specimen may be moved around by
the interaction with the beam if it has too large of a current. Both of these effect are
ignored here for simplicity, so this result is a little bit of a fantasy.

Figure 7.25a is a BF-CTEM image (512 by 512 pixels) of the molecule with no
support (magically suspended in space; not possible). Cryo-EM typically assumes
that the biological specimen is a weak phase object (WPO) so that the intensity in
the image is easily correlated with atomic density in some way. However, Fig. 7.25a
is not really a WPO. The background (outer edges in the image) should be the
largest signal (white) but is gray (i.e., the signal is scaled to fill the black to white
range). The region in the middle where the specimen is should be smaller (various
shades of gray) but has regions larger than the background (white) inconsistent with
it being a WPO (a more systematic study may be warranted here, there might be
some interaction with defocus as well). Figure 7.25b is a BF-CTEM image of the
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molecule with a 20 Å amorphous carbon support, simulated by generating uniformly
distributed random numbers used as atomic coordinates for the carbon atoms inside
a rectangular slab on the exit surfaces. A minimum separation of 1.4 Å between
carbon atoms was maintained using the known density of carbon (2.0 gm/cm3), with
a filling fraction of 0.9 (to mimic a rough surface). There were approximately 91,000
atoms in the carbon support. Generating random coordinates inside a rectangular
volume is relatively easy, but keeping them a minimum distance apart is not. It is
best to keep the coordinates in a list sorted by one coordinate (z was used) using
an insertion sort. Then a new random coordinate only need be tested on a few
nearby (in z) coordinates (and rejected if it is too close) not the whole list which
is an N2 problem that quickly escalates into a large computational effort. There is
essentially nothing visible in the BF image, which is why biological specimens are
usually stained with some heavy material (no stain here). In principle multislice can
handle a surrounding stain if given a list of coordinates for the atoms in the stain
(not easy to get or calculate). Figure 7.25c is a BF-CTEM images with amorphous
or vitreous ice surrounding the biological molecule to approximate the cryo-EM
specimen techniques. Rapidly frozen water (ice) seems to more closely preserve
the state of the biological molecule near its natural state and reduce radiation
damage (at the expense of image noise in the support structure). Rapid freezing also
prevents crystal formation in the ice which might damage the specimen. Ice has been
modeled as successive random coordinates filling the space around the biological
molecule (similar to amorphous carbon above) with about the same thickness (in z)
as the biological molecule. Random coordinates for the oxygen atom in water were
generated in the whole volume keeping a minimum distance (1.4 Å) between all
other atoms of water and atoms in the biological molecule. Two hydrogen atoms
were added at random positions with the required bond length and all three atoms
in H2O were added to the existing list. For programming simplicity the hydrogen
bond angle was ignored which is likely a small effect in projection. Water molecules
were added until the average density outside a bounding box surrounding the
biological molecule was that of ice (0.92 gm/cm3) with a filling fraction of 1.0.
Water molecules may occupy large holes on the surface and inside the biological
molecule which is probably true in practice. With normal Scherzer focus conditions
the image in ice is just a uniform rough surface with no structure for the biological
molecule. As practiced in cryo-EM (for example, Frank [143], Cheng et al. [63])
Fig. 7.25c has been given a very large defocus to push the WPOA transfer function
into low spatial frequencies (where more of the structural information seems to
be) at the expense of significantly scrambling the high spatial frequencies (high
resolution). Cryo-EM images may require deconvolution of the transfer function
(not done here).

Figure 7.25d–f are ADF-STEM (30–100 mrad detector) images of the same
specimens in Fig. 7.25a–c. The specimen transmission functions (one per 2 Å slice)
were sampled with 2048 by 2048 pixels and the probe was 512 by 512 pixels.
There are 512 by 512 pixels in the final image. It is interesting that the structure
should be visible even without staining in ADF although the signal is much smaller
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and radiation damage will be much more of a problem with a larger beam dose.
ADF naturally keeps a lot of the low spatial frequencies unlike BF-CTEM in the
WPOA. There might be some reason to try this with a low dose technique and a
cold stage to reduce radiation damage. For this particular specimen and imaging
parameters the simple incoherent image model (Eq. 3.70) yields an image that is
subjectively the same as the image in Fig. 7.25d–f, which can be calculated in
seconds rather than hours. Engel and Colliex [119] and Engel [118] (amongst
many) have reviewed STEM imaging of biological specimens. BF-CTEM imaging
of biological specimens has been reviewed by a great many authors.

7.9 Ronchigrams (in STEM)

A Ronchigram is a convenient experimental method of diagnosing the aberrations in
a focused probe (in STEM). It originated in light optics for measuring aberrations by
passing the light through an optical grating and measuring the distortions. At high
resolution in the STEM it is not practical to machine a grating of appropriate size so
a thin amorphous specimen (typically carbon) is substituted. If a defocused probe
is incident on the specimen, then the beam illuminates a small circular region on
the specimen in the shape of the objective aperture. In the far field (calculated with
a Fourier transform) a shadow image of the specimen is formed. This image is a
curious combination of the real space image of the specimen and angles in the
objective aperture. If there are no aberrations, then the rays in the probes are uniform
and the resulting shadow image is similar to a BF-CTEM image of this region of
the specimen. The aberrations of the instrument cause the ray paths in the probe
to be distorted (with a corresponding distortion of the image of the specimen) in a
manner determined by each aberration. The resulting pattern is similar in some ways
to the calculated aberration structure in Fig. 2.19. If the specimen has a recognizable
structure, then these ray distortions can be used to diagnose the aberrations currently
present. A Ronchigram is also just the center disk in a CBED pattern, although the
outer disks are usually not shown. A Ronchigram is rarely useful (for diagnosing
aberrations) from a crystalline specimen which may produce a multitude of Bragg
reflections in unhelpful places. Thin amorphous specimens have the advantage of
usually producing only one central disk that is strong enough to see.

Figure 7.26 shows several calculated Ronchigrams in a thin amorphous carbon
specimen of size 150×150 Å and 512×512 pixels (carbon atom positions calculated
as described in Sect. 7.8, and 2 Å thick slices). These were calculated as a CBED
pattern with a large specimen area (small pixel size in angle) and a large objective
aperture. As defocus is reduced in magnitude the visible area of the specimen would
also be reduced. Figure 7.26a is the ideal aberration free Ronchigram. The whole
center region is a shadow image of the amorphous carbon and the outer circle is
an image of the objective aperture (made large to better see the aberrations). The
parasitic aberrations (m �= 0) produce circular lobes around the outer circumference
of aperture. There are what may look like several jagged parallel arc in a group
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Fig. 7.26 Calculated Ronchigrams through 30 Å of amorphous carbon for a beam energy of
100 keV, Δf = 300 Å, objective aperture of 60 mrad. (a) Ideal aberration free, (b) C23a = 200 nm,
(c) C34a = 50µm, (d) C45a = 0.9 mm, (e) C54a = 20 mm, (f) C56a = 20 mm

with the rounded portion pointing toward the center of the circle. Each value of m

produces a different number of groups. Figures 7.26b have m = 3 and has three
groups. Figures 7.26c, e have m = 4 with four groups. Figures 7.26d, f have 5 and 6
groups, respectively. Low order aberrations (such as C23) extend far into the center
of the disk and high order aberrations tend to be pushed to the outer circumference
of the disk (such as C56). There is a small flat undistorted region in the center of
Fig. 7.26c, d, f that would be useful to use in an ADF-STEM probe (i.e., put a small
objective aperture here).

A calculation such as this has the luxury of choosing the aberrations one at a time
with a value that yields an interesting pattern (as done here). However, in practice
there may be many different aberrations present that combine into a disturbing mess.
In addition the center of the aberration may not be the same as the center of the
Ronchigram or the center of the other aberrations adding to the confusion. There
has been some progress in using Ronchigrams to diagnose and tune an aberration
corrector using sophisticated computer analysis (for example, Lupini [323]).
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7.10 Aberration Tuning

A modern aberration-corrected instrument can be quit complicated and requires
sophisticated computer control. There are 25 different aberrations through fifth
order (see Table 2.1) that must be precisely adjusted for optimum performance. In
practice, there will always be some small measurement (or adjustment) errors left
leaving a collection of small residual tuning errors. The current practice is to adjust
each aberration to yield no more than a π/4 phase error in the objective aperture per
aberration (see Sect. 2.2). Figure 7.27 shows an ADF-STEM line scan through the
dumbbells in 110 silicon for the case of perfect aberration correction and different
random aberration errors within the maximum allowed error of ±π/4 per aberration.
Defocus and astigmatism are assumed to be manually adjusted by the operator to
their optimum values and hence held at zero, leaving 22 other aberrations with small
errors (through fifth order). The optimum defocus (for a maximum peak signal) is
at the middle of the specimen (25 Å for a 50 Å thick specimen). The allowed tuning
errors produce a random variation of about 20% in the peak amplitude, which may
cause significant difficulty in quantitative matching in image intensity. This variation
is not reproducible, but will be different every time the microscope is used, unless

Fig. 7.27 Calculated line scan of 110 silicon (50 Å thick) using aberration-corrected ADF-STEM
(100 keV, 30 mrad objective aperture, 80–200 mrad detector angles) with random ±π/4 tuning
errors (to 5th order, excluding defocus and astigmatism). The solid line has identically zero
aberrations (perfectly tuned) and the other dashed and dotted lines have different random errors.
Focus was set at the middle of the specimen (25 Å). Source size and defocus spread have been
ignored for ease of calculation
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tuned to a somewhat tighter tolerance on a regular basis. Aberrations with m = 1
(such as C21 and C41) may also cause a small shift in the peak position because
these are similar to pure shift (C01).

A convenient measure of the total image contrast or signal strength is the total
image variance σ 2 normalized to the square of the image mean μ2. The variance is
just the square of the standard deviation σ . Dividing by the mean squared tends to
reduce the sensitivity to small beam current drift and sample thickness variations. If
zij is the value in each pixel, then this figure of merit is:

F(Cnm) = σ 2

μ2
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F(Cnm) is an abbreviation for the dependence on all aberrations Cnm and N is the
total number of pixels.

Figure 7.28 shows the normalized image variance versus each aberration through
third order for an ADF-STEM image of approximately 50 Å (17 unit cells) of Si3N4
calculated with a slice thickness of approximately 2 Å, and 512 by 512 pixels. Only
one aberration was varied at a time with all others held at zero. The aberrations
Cnm are normalized to their respective tolerances Tnm (Eq. 2.29). The behavior of
the b type aberrations Cnmb is similar to the a type aberrations and is not shown for
simplicity. For some reason the optimum focus for this specimen is about on the exit
surface rather than the middle as in other specimens. Coma, C21 can be compensated
by shift C01 which does not have much effect so coma is less sensitive than other
aberrations.

The normalized total image variance in ADF-STEM, Fig. 7.28, has a remarkably
simple dependence on the aberrations. Also, when the aberrations are normalized to
their respective tolerances Tnm they produce a similar effect. This simple behavior
has been proposed as a means of tuning an aberration corrector using standard N-
dimensional optimization algorithms (Kirkland [278]), inspired by earlier work of
Erasmus [120] and Smith on automatic focusing and astigmatism adjustment in a
SEM. A similar curve given in Kirkland [278] for a slightly different specimen (110
silicon) in the incoherent image model (no thickness) showed a similar shape but
decayed quicker as the aberration got larger (possibly a small thickness effect).

Figure 7.29 shows the normalized image variance for a BF-CTEM image of
approximately 50 Å (17 unit cells) of Si3N4 calculated with a slice thickness of
approximately 2 Å, and 512 by 512 pixels, similar to Fig. 7.28 for ADF-STEM.
A condenser angle of 0.1 mrad and defocus spread of 20 Å have been included.
BF-CTEM has a minimum contrast at Gaussian focus (zero defocus) whereas ADF-
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Fig. 7.28 Calculated normalized total image variance (512 by 512 pixels) for ADF-STEM in
Si3N4 with approximate thickness of 50 Å versus individual aberrations. Beam energy of 100 keV
and objective aperture of 30 mrad. Optimum defocus zero was set at 56.7 Å (relative to the entrance
surface). Source size and defocus spread have been ignored

STEM has maximum contrast or signal. BF-STEM requires defocus to produce a
good signal (plus other m = 0 aberrations, C30, C50, etc.) There is an argument for
recalculating this figure about a Scherzer focus condition, but this has not been done
here.

7.11 Quantitative Image Matching

Most comparisons between theoretically simulated electron micrographs and exper-
imentally recorded electron micrographs are somewhat subjective. The two images
are just displayed side by side and pronounced as being in good agreement after
subjective visual inspection (Sect. 7.5 is also guilty of this practice). In principle it
is possible (indeed recommended) to be more quantitative in comparing simulated
and recorded images (vanHeel [508], Barry [22, 23]). An easily definable figure of
merit is the Chi-Squared measure of the difference between two images :

χ2 = 1

NxNy

∑

i,j

[fexp(xi, yj ) − fsim(xi, yj )]2/σ 2
ij (7.4)
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Fig. 7.29 Calculated normalized total image variance for BF-CTEM in Si3N4 of approximate
thickness of 50 Å versus aberrations to third order. Beam energy of 100 keV and objective aperture
of 30 mrad. Optimum focus was set at 25 Å

where NxNy is the number of pixels in the image, σij is the error associated with
pixel (i, j), fexp(xi, yj ) is the experimental image, and fsim(xi, yj ) is the simulated
image. (This symbol χ should not be confused with the same symbol used for
the aberration function.) This definition of χ2 is technically called the reduced χ2

because it is normalized to the total number of data points. A value of χ2 ∼ 1
indicates a good fit. The r-factor figure of merit (R1, or R2) commonly used in
X-ray diffraction could also be used.

R1 =
∫

|fexp(x, y) − fsim(x, y)|dxdy/

∫
|fexp(x, y)|dxdy

R2 =
∫

|fexp(x, y) − fsim(x, y)|2dxdy/

∫
|fexp(x, y)|2dxdy (7.5)

It would be very nice to be able to quote a value of χ2 or the r-factor for
the agreement between a simulated image and an experimentally recorded image.
However there are considerable obstacles to overcome to perform a quantitative
image match. In practice the two images to be compared can be in different
orientations (translation and rotation) and they will never be at exactly the same
magnification. Just to begin a quantitative comparison requires fitting these four
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degrees of freedom. These properties of the image must be found in spite of the fact
that the image may be noisy.

Next the overall scale and background level of the experimental image must be
found. Most image detectors (film is particularly difficult to quantify) are designed
to provide a linear image which is all that is required for human vision. This means
that there are two additional degrees of freedom. The recorded image intensity may
have an arbitrary additive and multiplicative constant:

fexp(x, y) = adetfideal(x, y) + bdet (7.6)

where adet and bdet are constants unique to each detector. These scaling constants
can be found by recording the image intensity through a hole in the specimen
and the intensity with the beam turned off (ideally at the same time that the
image is recorded), but this additional measurement is rarely done. Film and plates
notoriously vary with development time and temperature, etc. and are difficult to
quantify but more modern CCD imaging systems may make this much easier.
With a lot of care an experimental image can be recorded with sufficient detail to
quantitatively compare to a simulated image but this extra burden is rarely accepted
in practice, so most comparisons are subjective in nature.

Thust and Urban [491] and Möbus and Rühle [356] have also proposed using the
cross correlation coefficient such as:

Ccor(fexp, fsim) =
∑

xy(fexp(x, y) − fe0)(fsim(x, y) − fs0)
√∑

x,y(fexp(x, y) − fe0)2
∑

xy(fsim(x, y) − fs0)2
(7.7)

where fe0 and fs0 are the average values of fexp(x, y) and fsim(x, y), respectively.
The cross correlation coefficient has the advantage of eliminating the dependence
on the scaling parameters of the detector.

Minimizing χ2 (or maximizing the cross correlation coefficient) with respect
to some parameter of the simulation is a method for extracting that parameter
from the recorded image. The specific program implementation of a minimization
procedure can become rather involved and may involve a multislice simulation for
each iteration. Kirkland [284] has used this approach to determine the defocus of the
electron micrographs. Wilson et al. [536] have used a semi-quantitative matching
technique to determine the optical parameters of the microscope such as spherical
aberration Cs and defocus Δf .

Ourazd et al. [392] have used a quantitative pattern matching technique to map
the stoichiometry of their specimen. A precalculated set of possible specimen types
was quantitatively compared to each unit cell of the specimen to determine its
chemical composition. The best match determined the chemical composition of each
unit cell. This requires that there be a small number of different unit cells.

King [262] and Möbus and Rühle [356] have performed nonlinear least squares
fitting to extract specimen parameter such as tilt and defocus as well as the atomic
coordinates. Zhang et al. [547] have used a quantitative fitting procedure to refine
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the atomic coordinates at an interface. Möbus [353] and Möbus and Dehm [354]
have recently proposed maximizing the cross correlation coefficient instead of
minimizing χ2 to refine the specimen parameters and coordinates. Möbus et al.
[357] have presented a general structure retrieval program using image matching.

For the last decade or so many authors have found a significant discrepancy of
about a factor of 2× to 3× (principally in the lattice fringe amplitude) between
calculated and experimentally measured images that has become known as the
“Stobbs factor” (Hÿtch and Stobbs [222], Boothroyd [41]). As discussed above this
is a difficult measurement, usually requiring a measurement of the incident beam
intensity on an absolute scale, an accurate specimen model, and a well-characterized
electron optical column (aberrations and partial coherence) and detector response
function. A possible amorphous contamination layer (Mkoyhan et al. [352]) on the
specimen (usually organic material from the air or diffusion pumps), crystal tilt
(Maccagnano et al. [326]), or inelastic scattering may also confuse the issue. Thust
[488] has recently obtained good quantitative agreement of BF-CTEM images using
an accurate model of the CCD transfer function. LeBeau et al. [304] have obtained
good agreement between theory and experiment in BF-STEM images which should
be similar to BF-CTEM via reciprocity. Klenov et al. [288], LeBeau et al. [305–
307], and Findlay and LeBeau [134] have also obtained good agreement between
measured and calculated ADF-STEM images using Bloch waves and multislice
with the frozen phonon approximation. Meyer et al. [343] have found it necessary to
include charge redistribution in graphene to obtain good agreement in BF-CTEM.
Krause et al. [295] have obtained good agreement in CTEM with small apertures
and a small discrepancy for large apertures. There is good reason to believe that the
current theory is quantitatively correct with careful attention to experimental details.

7.12 Troubleshooting (What Can Go Wrong)

There are a large number of things that can go wrong in an image simulation. The
proposed specimen structure must be specified in some detail, usually in the form of
a list of atomic coordinates and atomic numbers in a unit cell. Even less well known
is the thickness of the specimen. Usually a large sequence of possible specimen
thicknesses are calculated and compared to experiment.

The instrumental (optical) parameters such as the aberration constants (Cs ,
etc.) and aperture size of the objective lens and lens defocus must be known.
Usually defocus is not known very well (particularly in bright field phase contrast).
Frequently a defocus series is calculated for comparison to experiment. There are
also a variety of parameters such as defocus spread, illumination angle, etc. that are
hard to estimate but can influence the image.

There are also many parameters that are solely related to the calculation and
have very little to do with the microscope or specimen but can dramatically affect
the calculation. These parameters include the sampling size (pixel size) in the image
and slices and the slice thickness itself.



7.12 Troubleshooting (What Can Go Wrong) 239

Multislice almost always uses an FFT to reduce the total CPU time. The FFT
is a discrete Fourier transform which repeats the image infinitely in all directions.
Although the image is only displayed as a single image you should remember that
it is really an infinite array of identical side-by-side images. This produces a strange
effect called the wrap-around error. The left side of the image in essence touches the
right side of the image (and vice versa) and the top of the image touches the bottom
of the image (see Fig. 6.12). To use the FFT each image and slice must obey periodic
boundary conditions or be an integer number unit cells of the specimen (called a
super cell). Interfaces and defects must be imbedded inside a large super cell.

In summary, some of the things that need to be specified correctly are:

Specimen parameters: atomic coordinates and numbers of the specimen and
thickness of specimen

Instrumental parameters: defocus, Cs , objective aperture, etc.
Sampling size: number of pixels in the image and slice and the slice thickness.

Ensure that the total integrated intensity is at least 0.9 or higher (1.0 to start).
Calculations with slightly higher or lower sampling should yield the same result
if the sampling is adequate.

Slice thickness: usually the slices should correspond to the existing atomic layers
in the specimen. If the slices are too thick, then the total integrated intensity will
decline too much (as in the sampling size issue) and may produce false high order
Laue zones corresponding to the slice thickness.

Wrap-around error: each slice must obey periodic boundary conditions



Chapter 8
The Programs

This chapter describes the programs that were used to calculate many of the figures
shown in the text. These programs are also available on the associated web site
(see link given in the preface). The general organization of the programs and
some specific examples of running the programs are given. It describes how to
prepare the input data files with the specimen description and how to actually run
the programs. Alternately this discussion can be viewed as a description of some
possible approaches to implementing programs to perform the calculation described
earlier in this book.

There are two groups of programs. The TEMSIM group of programs (for
conventional and scanning Transmission Electron Microscope image SIMulation)
uses a simple command line user interface and the computem program has a more
unified graphical user interface (GUI) . Most of the basic calculations are separated
into independent calculation-only modules with no obvious user interface. TEMSIM
and computem mostly call the same low level calculation modules to perform the
actual calculations, but have different front end user interfaces and different back
end file save functions. TEMSIM is organized as several separate programs but
computem is a large unified program with a GUI which many users find easier to
use. Separating TEMSIM into different pieces makes the calculations easier to test
and debug before incorporating into computem. The TEMSIM group is also easier
to script into long sequences of operations (using scripting facilities available in
most operating system). The command line interface in TEMSIM has almost no
operating system dependence so is more portable.
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8.1 TEMSIM Program Organization

The TEMSIM programs are written in a generic no-frills manner using C/C++
(Stroustrup [477]). The code adheres to the standard definition of the language
as much as possible so that the programs will run on as many different types of
computers as possible. The programs are nearly independent of the operating system
used. Their main purpose is to perform the numerical simulation in an efficient
manner without being dependent on any specific type or brand of computer. They
do not have a very elegant user interface by today’s standards, but they are as nearly
machine independent as they can be. The programs are intended for people who are
comfortable using the simple command line interface available on most operating
systems. There is some error checking, but very inappropriate input may cause the
programs to crash in an uncivilized manner. They have been compiled and run on
a variety of different computers without requiring any changes to the program.
They will probably evolve with time or be abandoned in favor of new programs.
Some portions of TEMSIM are incorporated into computem with a graphical user
interface (GUI).

The TEMSIM programs are a group of loosely coupled programs. The basic
simulation steps are split into a small number of separate programs with the output
of one program being used as the input for the next program. For example, there is
one program called atompot (for atomic potential) to calculate the projected atomic
potential of a two- dimensional slice through the specimen. This program should
be run for each slice in the specimen. The output of atompot can be read by the
program mulslice to calculate the wave function that would be transmitted through
the specimen using the multislice method. A third program called image can then
use the results of mulslice to calculate a defocused CTEM image. The advantage
of splitting the programs this way is that atompot and mulslice take more computer
time than image but their output can be reused several times. The program image
can use the same results of atompot and mulslice several times to generate a series
of images at different defocus in an efficient manner. Furthermore the output of
atompot can also be used by stemslic to simulate a STEM image. The programs in
the TEMSIM group can be combined in different ways to produce different results
without having to reprogram each specific case or image simulation operation. This
obviously requires using a standard disk data file format to store the intermediate
images.

There are two possible strategies for describing the specimen structure. One
strategy, applicable to specimens with a few repeating layers (periodic along z or
the beam axis), is to manually decompose the specimen into a sequence of repeated
slices. Simple crystals frequently divide into a small number of repeated layers.
The atomic coordinates for each layer are generated by hand and the projected
atomic potential of the layer (or slice) is calculated and stored in a disk file.
The potentials are then read into memory and used over and over again in the
multislice method. The programs atompot, mulslice, and stemslic use this approach.
If there are only a few different layers that are repeated many times, then this is the
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most efficient method because it avoids recalculating the projected atomic potential
of the same layer over and over again. In principle it might be possible to automate
this decomposition, but the programs still require this to be done by the human
operator. A second strategy, applicable to amorphous specimen with no obvious
repeating structure (along the beam direction), is to read in a list of all of the (three
dimensional) coordinates of the atoms in the specimen, sort by z (position along
the beam axis), and calculate the projected potential for each slice as it is needed
and then discard it. If the specimen is completely amorphous, then the potentials
cannot be reused so there is no loss of efficiency; however, this calculation can
take substantially longer than reusing a small number of repeated layers or slices.
The programs autoslic and autostem use this approach. This can also be used for
periodic or semi-periodic structures if computer time is readily available.

autoslic and autostem are second generation programs that are split into a
separate calculation portion and a separate user interface portion (front end) and
file save portion (back end). This allows them to be used in both a command line
user interface mode and a graphical user interface (GUI) mode. incostem is a fast
approximate ADF-STEM calculation that is also organized in this manner.

8.1.1 Image Display

The numerical portion of the simulation programs can be written to be independent
of the specific computer they are running on but the simple operation of displaying
the image on the computer screen is very different on each type of computer and
is usually also very difficult to program properly. However there are currently
many different image display and manipulation programs available on most popular
computer platforms. These programs range from simple display programs (some
are distributed free) to complex commercial package with elaborate image manip-
ulations capabilities. Even simple word processing programs can include images if
they are in the correct format. There is a rather strong incentive to somehow use
the existing image manipulation programs to display and manipulate the results of
the image simulation without having to write a display program on each different
type of computer. Using an image file format that the available image display
programs recognize will allow the TEMSIM results to be feed into the existing
image display programs. Each image program has its own constraints on which
format the image data should be stored in to use the program. There are a wide
variety of image file formats that can be used, ranging from proprietary formats from
specific manufacturers to well-described standard formats published in publicly
available manuals. Almost all of the available image display software supports the
TIFF (or Tagged Image File Format) format. TIFF has been around for many years
and is well supported on many different computers (many standards now exist).
As of version 6.0, TIFF also has enough features to be usable for multislice image
simulation. The TEMSIM package uses the TIFF standard image file format (with
the standard extensions to support both 8-bit gray scale images for display and 32
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bit floating point images for calculations, see discussion below). The results of the
image simulation can be easily manipulated and displayed by a wide variety of
available software.

8.1.2 Disk File Format

The TEMSIM package uses the TIFF standard file format to store image data.
TIFF was originally designed in the late 1980s to store black and white images
for desk top publishing and has evolved into a published standard supporting both
black and white images and color images as well as two tone line drawings. Murray
and vanRyper [367] have discussed TIFF and cataloged many other standard image
formats. TIFF is more powerful and flexible than many other formats, which is both
an advantage and a curse because it is also complicated. It can be very difficult to
program a good TIFF subroutine library but the format can be extended to do a
lot of different things. TIFF has many more features than are needed in any one
applications and most applications only support a subset of TIFF features. Simply
saying that a file is in TIFF format is not enough to specify the type of data format.
The image must also be specified as color or black and white or a simple line
drawing and the number of bits per pixel must be identified. The TEMSIM package
uses a combination of 8-bit gray scale images and 32 bit floating point images
(described in more detail below). When most image processing program say they
support TIFF format they typically mean 8-bit gray scale images or occasionally
mapped color or true color images.

The first eight bytes or header of a TIFF file specifies the byte ordering scheme
the file uses and the byte offset of the first IFD or image file directory in the file.
There is a threaded directory structure inside each TIFF file. TIFF files can use either
the big-endian or little-endian byte ordering scheme. Byte ordering refers to the
order in which the bytes (one byte is eight bits) are addressed within a 32 bit
(or four byte) data element (or word). In big-endian byte ordering (used by some
microprocessors) the byte address starts at the most significant byte and advances to
the least significant byte. Little-endian byte ordering (used on Intel microprocessors)
is just the opposite, the address starts at the least significant byte and increase to
the most significant byte. All TIFF readers are required to read both byte ordering
schemes so that TIFF image files should be transportable between different types of
computers. (In practice some application software does not always follow this rule.)
Also contained in the TIFF eight byte header is a pointer (or byte offset within
the TIFF file) to an IFD or image file directory. The IFD contains a list of data
about the image, such as the number of bits per pixel, the number of pixels in x

and y, etc. Each data item is identified with a unique tag or eight bit code. TIFF
stands for Tagged Image File Format because of this tagged data structure. There
are several dozen different tags listed in the TIFF standard but only a small subset
of a dozen or so are typically used in a given application. Subroutines that read
TIFF files must somehow deal with many different possible tags and this tends to
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make TIFF difficult to program. Also contained within the IFD is a list of byte
offsets (or pointers) for the raster image data itself and a pointer to the next IFD
in the file. If there are no more images in the file, then the next IFD pointer is
NULL. Only the eight byte header is in a fixed position in the file. The IFD’s and
the image data associated with them may be anywhere in the file. The TIFF file
has an internal threaded data structure. There can be more than one image, each
with its own IFD. The first eight byte header points to the first IFD and its image
data. The first IFD then points to the second IFD and its image data, and so forth.
To read a TIFF file the computer program must follow all of the pointers as they
wind their way through the file. This also presumes that the programming language
can address any specific byte within the file (i.e., this essential requires using the
C/C++ programming language). Refer to the actual published TIFF standard [70]
for a complete description of the data format.

Most software applications that support TIFF images only read the first image
in the file. The stated purpose of the second and later images in the TIFF file is for
storing higher resolution versions of the image. This feature is very useful for image
simulation. As of version 6.0 TIFF also supports a floating point pixel data type
(each pixel is one 32 bit IEEE format floating point number). TEMSIM uses this
feature to combine an 8 bit image with a 32 bit floating point image. The first image
in the TIFF file is an 8-bit gray scale preview version of the image and the second
image is the 32 bit floating point version of the image. Most display programs
assume square pixels, so the 8 bit image is expanded in one direction if necessary
(using bilinear interpolation as in Appendix E) to get square pixels. (Compressing
the image using interpolation runs the risk of leaving out sharp points so is not used.)
The second image, which is ignored by many image display programs, is a 32 bit
floating point image used for numerical simulation. Although it seems as if each
data file looks like an 8 bit image it really has 32 bits of precision for numerical
calculation. Storing both versions of the image increases the size of the file by about
25% but allows using readily available image display programs. When you look at
an intermediate TIFF image used in the TEMSIM package you should be careful
not to save it from a standard TIFF application, because this will most likely destroy
the hidden 32 bit portion of the image. Stacking the images and using 32 bit floating
point pixels data are allowed within the TIFF standard so this type of format may
be referred to as an extended TIFF format. When one TEMSIM program reads the
results generated by another it is helpful for the image file to contain its parameters
like electron energy, etc. This information is transferred in a third image in the TIFF
file that is 512 pixels wide and one pixel high. This image is not for display but
contains a 512 element array of image parameters. Complex images are stored side
by side as two real floating point images. The program file floatTIFF.cpp contains
a library of TIFF subroutines for reading and writing floating point TIFF images in
this format.

Some application programs require that the name of a TIFF file end in “.tif” to
be identified as a TIFF file, so it is a good practice to end all image data file names
with “.tif.” Also, some display programs put the origin in the upper left corner and
some put it in the lower left corner, which is sometimes confusing.
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8.2 BF-CTEM Sample Calculations for Periodic Specimens

There are three basic computational steps in simulating a BF-CTEM image. The
first step is to calculate the projected atomic potential of each slice of the specimen
using the atompot program. The second step is to transmit the incident electron wave
(usually a plane wave) through the specimen using the program mulslice. The third
and final step is to form the image with defocus and the objective lens aberration
using the program image.

This example will simulate an image of strontium titanate (SrTiO3), which has a
cubic perovskite structure with a cubic unit cell size of a = 3.905 Å. There are Sr
atoms on all of the corners of the cubic and O atoms on center of each face, with
a single Ti atom in the center of the cube. (There is an alternate description of this
structure with the positions of Sr swapped with that of Ti and the O atoms on the
edges instead of the faces.) With the optic axis of the electron microscope along one
of the three primary cubic axes this specimen naturally divides into two rectangular
slices. One slice is a face of the cube and the other is through the center of the cube.

The examples below list the computer response while each program is running.
Each line containing information that the user must supply has a “>” at the
beginning of the line. This is to separate the computer response from the user
response and should not be entered when the program is actually run. Multiple
numbers should be entered separated with spaces and without commas.

8.2.1 Atomic Potentials

The projected atomic potential of the slices in the specimen are calculated using
atompot. This program calculates the structure factor in reciprocal space using the
scattering factors in the first Born approximation and then does an inverse FFT to
get the projected atomic potential (see Eq. 5.21). The result stored in the file does
not contain the leading factor of λm/m0 so that it is independent of electron energy.
The programs mulslice and stemslic add this factor later when the potential is used.

The atompot program can also apply symmetry operations to the atomic position
using the following symmetry operation:

xnew = Sxaixold + Sxbi (8.1)

ynew = Syaiyold + Sybi (8.2)

where the parameters Sxai, Sxbi, Syai, and Sybi are supplied for each symmetry
operation. (x, y)old are the specified atomic coordinates and (x, y)new are the
coordinates generated by the symmetry operation. If the specimen has a high degree
of symmetry, this feature can greatly reduce the amount of data to type in.
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Table 8.1 The format of the
input data for atompot. There
are two different atomic
numbers Zatom1 and Zatom2
with n and m coordinates
each. There may be an
arbitrary number of different
atomic numbers and an
arbitrary number of
coordinates for each atomic
number

ax by cz

Ns

Sxa1 Sxb1 Sya1 Syb1

Sxa2 Sxb2 Sya2 Syb2

: : : :

SxaNs SxbNs SyaNs SybNs

<blank line>

Zatom1

occ1 xpos1 ypos1 wobble1

: : : :

occn xposn yposn wobblen

<blank line>

Zatom2

occ1 xpos1 ypos1 wobble1

: : : :

occm xposm yposm wobblem

<blank line>

<blank line>

The format of the input data file for atompot is shown in abbreviated form in
Table 8.1. The first line of the file has three numbers (ax, by, cz) that are the
dimensions of the super cell of one slice of the specimen in Angstroms. The slice
thickness is cz. The next line has the number of symmetry operations (Ns) for each
coordinate, followed by the symmetry operations themselves. There is one line
for each symmetry operation and the number of lines must match Ns. If Ns = 0,
then no symmetry operations are listed. After the symmetry operations the atomic
coordinates of atoms are listed in groups with the same atomic number Zatom. Each
line of coordinate data has the reduced coordinates xpos = x/ax and ypos = y/by
of each atom. The first number on the coordinate data line is the occupancy (occ)
of each atom. The occupancy is typically one but may be set to a fractional value
(for example, the symmetry operations may generate several identical atoms at the
same location and the occupancy may be used to correct for this duplication). At
the end of each coordinate data line is a number labeled wobble signifying the
rms random displacement (in Angstroms) for simulating thermal phonons (typically
wobble = 0). This value is the rms deviation in each direction and not the 3D rms
value. atompot uses a random number generator with a Gaussian distribution to
simulate random thermal (phonon) displacements. The initial seed for the random
number generator is obtained from the clock() function, so that each run should
produce a different (random) results. This feature is mainly an historical artifact
(may be removed in future) and is usually not used (autoslic and autostem do this
much better). When all of the atoms for a particular atomic number have been listed
there is a single blank line. Following this blank line is the next atomic number
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Table 8.2 The atompot input data file srta.dat for the a layer of strontium titanate

3.9051 3.9051 1.9525
0

38
1.0000 0.0000 0.0000

8
1.0000 0.5000 0.5000

This is one face of the cube and has one strontium atom (Z = 38) in the corner and one oxygen
atom (Z = 8) in the center

Table 8.3 The atompot input data file srtb.dat for the b layer of strontium titanate

3.9051 3.9051 1.9525
0
22
1.0000 0.5000 0.5000

8
1.0000 0.5000 0.0000
1.0000 0.0000 0.5000

This is a plane through the center of the cube and has one titanium atom (Z = 22) in the center
and two oxygen atoms (Z = 8) on the edges

(Zatom2) and the coordinates for this atomic number are listed in the same format.
The input is terminated by two successive blank lines. Two different atomic numbers
are shown but there may be any number of different atomic numbers (limited by the
amount of computer memory available).

The input coordinates for both of the layers of the SrTiO3 specimen are shown in
Tables 8.2 and 8.3. Layer a has two atoms and no symmetry operations and layer b

has three atoms and no symmetry operations. The input data files may be prepared
using standard text editors or word processing programs if the file is saved as “text
only.” The input data specifies the coordinates for one unit cell and atompot will
expand the final potential to an arbitrary (positive) integer number of unit cells.
The rms random deviation is left blank because this feature will not be used in this
example. The results of running atompot on the data is shown below.

<---- run program atompot ---->

atompot version dated 5-aug-2017 EJK
Copyright (C) 1998-2017 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license
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Warning: this program is obsolete and may be discontinued soon

calculate projected atomic potentials (to use in multislice)
using FFTW

Name of file with input crystal data :
>srta.dat
Name of file to get binary output of atomic potential :
>srtapot.tif
Real space dimensions in pixels Nx, Ny :
>512 512
Replicate unit cell by NCELLX,NCELLY,NCELLZ :
>8 8 1
Do you want to add thermal displac. to atomic coord.? (y/n) :
>n
2D lattice constants= 3.9051 x 3.9051 Angstroms
and propagation constant= 1.9525 Angstroms

Unit cell replicated to a= 31.2408, b= 31.2408, c= 1.9525 Ang.
Maximum symmetrical resolution set to 0.122034 Angstroms

64 atoms with Z= 38 (Sr)
64 atoms with Z= 8 ( O)

for a grand total of 128 atoms
pix range 0.253792 to 47.6074
103184 fourier coeff. calculated in right half plane
The average real space value was 0.986566
CPU time (excluding set-up) = 0.12 sec.

<---- run program atompot ---->

atompot version dated 5-aug-2017 EJK
Copyright (C) 1998-2017 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license

Warning: this program is obsolete and may be discontinued soon

calculate projected atomic potentials (to use in multislice)
using FFTW

Name of file with input crystal data :
>srtb.dat
Name of file to get binary output of atomic potential :
>srtbpot.tif
Real space dimensions in pixels Nx, Ny :
>512 512
Replicate unit cell by NCELLX,NCELLY,NCELLZ :
>8 8 1
Do you want to add thermal displace. to atomic coord.? (y/n) :
>n
2D lattice constants= 3.9051 x 3.9051 Angstroms
and propagation constant= 1.9525 Angstroms
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Unit cell replicated to a= 31.2408, b= 31.2408, c= 1.9525 Ang.
Maximum symmetrical resolution set to 0.122034 Angstroms

64 atoms with Z= 22 (Ti)
128 atoms with Z= 8 ( O)

for a grand total of 192 atoms
pix range 0.0406346 to 30.2206
103184 fourier coeff. calculated in right half plane
The average real space value was 0.834076
CPU time (excluding set-up) = 0.16 sec.

8.2.2 Multislice

After the projected atomic potential has been calculated for each layer in the
specimen (and stored in a file), the mulslice program is run. This program performs a
multislice calculation to transmit the electron wave function through the specimen.
A sample output using the strontium titanate potentials from Sect. 8.2.1 is shown
below. This program allows the incident beam and the crystal to be tilted. The
incident beam tilt should obey periodic boundary conditions (i.e., not all angles are
allowed) and be small. The crystal tilt is calculated by adding a phase factor to the
propagator (Eq. 6.93) and is only valid for small angles of no more than about 1◦.

mulslice can also print out a table of values (real and imaginary part) for selected
beams versus thickness. The beam (or Fourier coefficient) can be specified by its
crystallographic index (h,k). However, this is the index in the super cell which
is not necessarily the same as the primitive unit cell. This feature is not used in
this example.

<---- run program mulslice ---->

mulslice version dated 4-may-2018 ejk
Copyright (C) 1998-2018 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license

Warning: this program is obsolete and may be discontinued soon

perform traditional CTEM multislice calculation
using FFTW with 4 thread(s)

Type in the stacking sequence :
>12(ab)

Type in the name of 2 atomic potential layers :

Name of file with input atomic potential :a
>srtapot.tif
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Name of file with input atomic potential :b
>srtbpot.tif
Name of file to get binary output of multislice result:
>srtmul.tif
Do you want to include partial coherence (y/n) :
>n
NOTE, the program image must also be run.
Do you want to start from previous result (y/n) :
>n
Incident beam energy in kev:
>400
Crystal tilt x,y in mrad.:
>0 0
Incident beam tilt x,y in mrad.:
>0 0
Do you want to record the (real,imag) value
of selected beams vs. thickness (y/n) :
>n
Wavelength = 0.0164394 Angstroms
layer a, cz = 1.9525
layer b, cz = 1.9525
Size in pixels Nx x Ny= 512 x 512 = 262144 beams
Lattice constant a = 31.2408, b = 31.2408
Total specimen thickness = 46.86 Angstroms
Bandwidth limited to a real space resolution of 0.183052 Ang.

(= 89.8077 mrad) for symmetrical anti-aliasing.
Number of symmetrical non-aliasing beams = 91529
slice 1, layer = a, integrated intensity = 0.999959
slice 2, layer = b, integrated intensity = 0.999935
slice 3, layer = a, integrated intensity = 0.999851
slice 4, layer = b, integrated intensity = 0.999811
slice 5, layer = a, integrated intensity = 0.999658
slice 6, layer = b, integrated intensity = 0.999593
slice 7, layer = a, integrated intensity = 0.999351
slice 8, layer = b, integrated intensity = 0.999253
slice 9, layer = a, integrated intensity = 0.998905
slice 10, layer = b, integrated intensity = 0.998767
slice 11, layer = a, integrated intensity = 0.998303
slice 12, layer = b, integrated intensity = 0.998122
slice 13, layer = a, integrated intensity = 0.997535
slice 14, layer = b, integrated intensity = 0.997307
slice 15, layer = a, integrated intensity = 0.996598
slice 16, layer = b, integrated intensity = 0.996323
slice 17, layer = a, integrated intensity = 0.995502
slice 18, layer = b, integrated intensity = 0.995187
slice 19, layer = a, integrated intensity = 0.994269
slice 20, layer = b, integrated intensity = 0.993912
slice 21, layer = a, integrated intensity = 0.992917
slice 22, layer = b, integrated intensity = 0.992538
slice 23, layer = a, integrated intensity = 0.991511
slice 24, layer = b, integrated intensity = 0.991113
make output pix 512 x 512
pix range -3.95399 to 0.996049 real,



252 8 The Programs

-1.85484 to 1.76015 imag
Total CPU time = 0.49 sec.
elapsed time = 0 sec.

The stacking sequence of the slices or layers of the specimen is entered in
symbolic form as 12(ab) in this example. Each layer is given a unique single
character name in the order abcd...xyzABCD...XYZ. There are 52 possible layer
names (it is case sensitive). Pairs of parenthesis denote a group of slices and the
leading number is the number of times that the group in parenthesis is repeated.
12(ab) means that there are twelve repeats of the sequence ab. Parenthesis may be
nested up to 100 levels and structures such as 5(2(ab)3(ca)) are possible.

8.2.3 Image Formation

The multislice calculation produces the wave function at the exit surface of the
specimen. The objective lens images this wave function. The program image adds
the effects of the objective lens aberrations and defocus and produces an image as it
would be observed in the electron microscope. image can perform this calculation
in a completely coherent mode or add partial coherence. The example shown below
is a coherent image. image does not change the input data file (from mulslice) so it
can be run several times with the same input file (without running mulslice again)
to produce a whole defocus series.

<---- run program image ---->

image version dated 30-jul-2017 (ejk)
Copyright (C) 1998-2017 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license

calculate TEM images with defocus, using FFTW

Name of file with input multislice result:
>srtmul.tif
Type 0 for coherent real space image,
or 1 for partially coherent real space image,
or 2 for diffraction pattern output:

>0
Name of file to get defocused output:
>srtimg.tif
Spherical aberration Cs3, Cs5 (in mm.):
>1.3 0.0
Defocus in Angstroms:
>566
Objective aperture size in mrad:
>9.33
Mag. and angle of two-fold astig. (in Angst. and degrees):
>0 0



8.2 BF-CTEM Sample Calculations for Periodic Specimens 253

Mag. and angle of three-fold astig. (in Angst. and degrees):
>0 0
Objective lens and aperture center x,y in mrad
(i.e. non-zero for dark field):
>0 0
Starting pix energy = 400 keV
Starting pix range -3.95399 0.996049 real

-1.85484 1.76015 imag.
calculate coherent image....
There were 989 pixels inside the obj. apert.
output image
Pix range 0.0510914 to 1.43728
Elapsed time = 0.03 sec.

8.2.4 Partial Coherence

Partial coherence may be added in two different ways. If the specimen is thin, then
the image may be calculated using the transmission cross coefficient as in Sect. 5.4.3
as shown below. The actual simulated image is shown in Fig. 8.1. The black dots
correspond to the oxygen atom positions and there is a contrast reversal in the image.

Fig. 8.1 The results of the program image for a partially coherent BF-CTEM image of strontium
titanate. The scale bar in the upper left corner is 10 Å
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<---- run program image ---->

image version dated 30-jul-2017 (ejk)
Copyright (C) 1998-2017 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license

calculate TEM images with defocus, using FFTW

Name of file with input multislice result:
>srtmul.tif
Type 0 for coherent real space image,
or 1 for partially coherent real space image,
or 2 for diffraction pattern output:

>1
Name of file to get defocused output:
>srtimg2.tif
Spherical aberration Cs3, Cs5 (in mm.):
>1.3 0.0
Defocus in Angstroms:
>566
Objective aperture size in mrad:
>12
Illumination semiangle in mrad:
>0.6
Defocus spread in Angstroms:
>50
Starting pix energy = 400 keV
Starting pix range -3.95399 0.996049 real

-1.85484 1.76015 imag.
calculate partially coherent image....
output image
Pix range 0.158975 to 1.32719
Elapsed time = 0.17 sec.

A more accurate type of calculation (for thick specimen) is shown next. This
method performs a multislice calculation for each incident angle (from the con-
denser illumination system) and sums the resulting images incoherently as described
in Eq. 6.98. The program mulslice does this calculation as shown below. The allowed
incident angles must satisfy periodic boundary conditions so only a few discrete
illumination angles can be used.

<---- run program mulslice ---->

mulslice version dated 4-may-2018 ejk
Copyright (C) 1998-2018 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license

Warning: this program is obsolete and may be discontinued soon

perform traditional CTEM multislice calculation
using FFTW with 4 thread(s)
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Type in the stacking sequence :
>12(ab)

Type in the name of 2 atomic potential layers :

Name of file with input atomic potential :a
>srtapot.tif
Name of file with input atomic potential :b
>srtbpot.tif
Name of file to get binary output of multislice result:
>srtmul2.tif
Do you want to include partial coherence (y/n) :
>y
Illumination angle min, max in mrad:
>0 0.6
Spherical aberration (in mm.):
>1.3
Defocus, mean, standard deviation, and sampling size (in Ang.):
>566 50 10
Objective aperture (in mrad) =
>12
Magnitude and angle of 2-fold astig. (in Ang. and degrees):
>0 0
Magnitude and angle of 3-fold astig. (in Ang. and degrees):
>0 0
Incident beam energy in kev:
>400
Crystal tilt x,y in mrad.:
>0 0
Wavelength = 0.0164394 Angstroms
layer a, cz = 1.9525
layer b, cz = 1.9525
Size in pixels Nx x Ny= 512 x 512 = 262144 beams
Lattice constant a = 31.2408, b = 31.2408
Total specimen thickness = 46.86 Angstroms
Bandwidth limited to a real space resolution of 0.183052 Ang.

(= 89.8077 mrad) for symmetrical anti-aliasing.
Number of symmetrical non-aliasing beams = 91529
Illumination angle sampling (in mrad) = 0.526217, 0.526217

Illum. angle = 0, -0.526217 mrad, total intensity= 0.991149
Illum. angle = -0.526217, 0 mrad, total intensity= 0.99115
Illum. angle = 0, 0 mrad, total intensity= 0.991112
Illum. angle = 0.526217, 0 mrad, total intensity= 0.991149
Illum. angle = 0, 0.526217 mrad, total intensity= 0.991148
Total number of illumination angle = 5
Total number of defocus values = 25
pix range 0.196647 to 1.45265 real,

0 to 0 imag
Total CPU time = 0.912 sec.
elapsed time = 1 sec.



256 8 The Programs

8.3 ADF-STEM Sample Calculations for Periodic Specimens

The program stemslic performs a multislice simulation for a STEM image. It
generates an incident focused probe wave function at each position of the final
image, transmits the wave function through the specimen (using multislice), and
then integrates the electron intensity on the detector. It can generate the signal
for several detectors at the same time. This is obviously a significant increase in
computer time relative to a CTEM image because a STEM simulation requires a
multislice simulation at each point in the image, whereas a whole CTEM image
is calculated in parallel. In response to this problem stemslic can generate a one-
dimensional line scan or a two- dimensional image. A line scan is relatively quicker
to calculate and can yield a significant amount of information about the specimen.
stemslic uses the same projected atomic potential (produced by atompot) for each
slice as is required for mulslice. Modeling interfaces may require a very large
number of pixels in the transmission function to avoid periodic interference between
interfaces. stemslic allows for the number of pixels in the probe wave function
to be less than the number of pixels in the transmission function to decrease the
required computer time. The pixel size in each must be the same however. A smaller
probe wave function slides around inside a larger transmission function (with the
periodicity of the transmission function not the probe wave function).

There are two examples shown below. Each uses the projected atomic potential as
calculated using atompot for the CTEM simulation (Sect. 8.2.1). The first simulation
below is a 1D line scan image and the second simulation is a 2D image simulation.
As in mulslice, crystal tilt is calculated by adding a phase factor to the propagator
(Eq. 6.93) and is only valid for small angles of no more than about 1◦. Both an inner
and outer angle may be specified for the objective aperture to model hollow cone
and apodization effects (Loane and Silcox [315]) to minimize the probe size. The
initial point of the line scan is (xi, yi) and the final point is (xf , yf ). The simulated
ADF-STEM image is shown in Fig. 8.2. The white spots correspond to the Sr atom
positions. The gray dot in the middle of four white dots are the Ti atom positions
and the black dots are the oxygen positions.

Fig. 8.2 The results of
stemslic for an ADF-STEM
image of strontium titanate.
The scale bar in the upper left
corner is 5 Å. This image
corresponds to the lower left
corner of the BF-CTEM
image in Fig. 8.1. The Sr
atom is in the lower left
corner and should be white
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<---- run program stemslic ---->

stemslic(e) version dated 10-aug-2017 (ejk)
Copyright (C) 1998-2017 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license

Warning: this program is obsolete and may be discontinued soon

perform STEM multislice using FFTW with 4 thread(s)

Type in the stacking sequence :
>12(ab)

Type in the name of 2 atomic potential layers :

Name of file with input atomic potential a:
>srtapot.tif
Name of file with input atomic potential b:
>srtbpot.tif
STEM prb param.,V0(kv),Cs3(mm),Cs5(mm),df(Ang.),apert1,2(mrad):
>100 1.3 0.0 850 0 11.43
Magnitude and angle of 2-fold astig. (in Ang. and degrees):
>0 0
Magnitude and angle of 3-fold astig. (in Ang. and degrees):
>0 0
wavelength = 0.0370144 Angstroms
Size of probe wavefunction Nx,Ny in pixels :
>512 512
Crystal tilt x,y in mrad. :
>0 0
Do you want to calculate a 1D line scan (y/n) :
>y
Number of detector geometries :
>2
Name of file to get output of 1D STEM multislice result :
>srt100_1d.txt
Detector 1: Type, min,max angles(mrad) of collector :
>50 200
Detector 2: Type, min,max angles(mrad) of collector :
>100 200
xi, xf, yi, yf, nout :
>0 12 0 0 25
layer a, cz = 1.9525
layer b, cz = 1.9525
Size in pixels Nx x Ny = 512 x 512 = 262144 total pixels,
lattice constants a,b = 31.2408 x 31.2408
Total specimen thickness = 46.86 Angstroms
Number of symm. anti-aliasing beams in trans. function = 91529
with a resolution of 0.183052 Angstroms.

Number of symmetrical anti-aliasing beams in probe = 91529
1 0 0 0.0865097 0.0692008
2 0.5 0 0.0722205 0.0574117
3 1 0 0.0421764 0.0327658



258 8 The Programs

4 1.5 0 0.0185487 0.0135994
5 2 0 0.011472 0.00792155
6 2.5 0 0.0218633 0.016271
7 3 0 0.0479635 0.0374944
8 3.5 0 0.0768416 0.0612204
9 4 0 0.0859489 0.0687375

10 4.5 0 0.0670029 0.0531162
11 5 0 0.0366695 0.0282767
12 5.5 0 0.0158581 0.0114361
13 6 0 0.0120988 0.00842279
14 6.5 0 0.0257812 0.0194373
15 7 0 0.0538918 0.0423487
16 7.5 0 0.0807025 0.0644054
17 8 0 0.0842883 0.0673658
18 8.5 0 0.0613653 0.0484815
19 9 0 0.031558 0.0241205
20 9.5 0 0.0137998 0.00978486
21 10 0 0.0133547 0.00942819
22 10.5 0 0.0302642 0.0230702
23 11 0 0.0598023 0.0471978
24 11.5 0 0.083662 0.0668486
25 12 0 0.0815915 0.0651392

The total integrated intensity range was:
0.9684 to 0.996714

CPU time = 3.44 sec.
elapsed time = 3 sec.

A two-dimensional image can be calculated as:

<---- run program stemslic ---->

stemslic(e) version dated 10-aug-2017 (ejk)
Copyright (C) 1998-2017 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license

Warning: this program is obsolete and may be discontinued soon

perform STEM multislice using FFTW with 4 thread(s)

Type in the stacking sequence :
>12(ab)

Type in the name of 2 atomic potential layers :

Name of file with input atomic potential a:
>srtapot.tif
Name of file with input atomic potential b:
>srtbpot.tif
STEM prb param.,V0(kv),Cs3(mm),Cs5(mm),df(Ang.),apert1,2(mrad):
>100 1.3 0.0 850 0 11.43
Magnitude and angle of 2-fold astig. (in Ang. and degrees):
>0 0
Magnitude and angle of 3-fold astig. (in Ang. and degrees):
>0 0
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wavelength = 0.0370144 Angstroms
Size of probe wavefunction Nx,Ny in pixels :
>512 512
Crystal tilt x,y in mrad. :
>0 0
Do you want to calculate a 1D line scan (y/n) :
>n
Number of detector geometries :
>1
Detector 1: Type, min,max angles(mrad) of collector :
>50 200
Name of file to get output of result for this detector:
>srtadf.tif
xi,xf,yi,yf, nxout,nyout :
>0 15.376 0 15.376 64 64
layer a, cz = 1.9525
layer b, cz = 1.9525
Size in pixels Nx x Ny = 512 x 512 = 262144 total pixels,
lattice constants a,b = 31.2408 x 31.2408
Total specimen thickness = 46.86 Angstroms
Number of symm. anti-aliasing beams in trans. function = 91529
with a resolution of 0.183052 Angstroms.

Number of symmetrical anti-aliasing beams in probe = 91529
output file size in pixels is 64 x 64
iy= 0, min[0]= 0.0113937, max[0]= 0.0865097
iy= 1, min[0]= 0.0113937, max[0]= 0.0865097
iy= 2, min[0]= 0.0113937, max[0]= 0.0865097
iy= 3, min[0]= 0.0113937, max[0]= 0.0865097

: :
iy= 56, min[0]= 0.0113937, max[0]= 0.0865097
iy= 57, min[0]= 0.0113937, max[0]= 0.0865097
iy= 58, min[0]= 0.0113937, max[0]= 0.0865097
iy= 59, min[0]= 0.0113937, max[0]= 0.0865097
iy= 60, min[0]= 0.0113937, max[0]= 0.0865097
iy= 61, min[0]= 0.0113937, max[0]= 0.0865097
iy= 62, min[0]= 0.0113937, max[0]= 0.0865097
iy= 63, min[0]= 0.0113937, max[0]= 0.0865097
output pix range : 0.0113937 to 0.0865097
The total integrated intensity range was:

0.9684 to 0.996743

CPU time = 494.344 sec.
elapsed time = 495 sec.

8.4 Non-periodic Specimens

Specimens that have no obvious periodic structure along the beam or z direction
require another approach to image simulation. The programs autoslic and autostem
implement this strategy. The specimen is described as a sequence of (x, y, z)

coordinates with an associated atomic number Zatom. This sequence is first sorted
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by depth (along z) and then is automatically sliced into layers of a specified
thickness Δz. The projected atomic potential of each slice is calculated, the electron
wave function is transmitted through the slice and propagates to the next slice. The
atomic potential is discarded after each slice and the process is repeated for each
successive slice until the electron wave function has reached the exit surface of the
specimen. This approach does not require a possibly tedious effort on the part of
the user to decompose the specimen into repeating layers but will take much more
computer time than calculations using repeating slices (as in atompot, mulslice, and
stemslice). However, if there is no repetitive structure along the beam direction (z),
then there is no significant difference in computer time. autoslic and autostem can
be dramatically easier to use than mulslice or stemslice for specimens with defects
or interface or completely amorphous specimens

This approach also uses a different method to calculate the projected atomic
potential of each slice (as compared to atompot). The computer time for this
non-periodic approach to image simulation is dominated by the calculation of
the projected atomic potentials of the slices, and this step should be optimized if
possible. (A STEM calculation may use the same potential for many probes so
may scale differently.) The atomic potential is very localized in real space (see
Fig. 5.5, for example) but it is very extended in reciprocal space. It is more efficient
to calculate the projected atomic potential in real space using Eq. 5.19 because
there are much fewer pixels to fill in (Pan et al. [393]). Each atomic potential is
assumed to have a range of no more than 3 Å in real space and the individual
projected potentials are calculated from expression (5.11). The transcendental
functions involved are time-consuming to calculate so a look up table of cubic spline
interpolation coefficients (using the quasi-Hermite spline method of Akima [4, 5])
is generated for the atomic potentials as needed (i.e., only for the specific atomic
numbers needed). The potential is sampled on a logarithmic grid to get more points
near the origin where the potential in rapidly changing. Using the spline look up
table reduces the CPU time by about a factor of three to four on typical specimens.
The total projected potential (integrated from minus infinity to plus infinity) has
some extent so each slice must be thicker than the range of the potential for a single
atom (about one Angstroms).

The input data format to describe a specimen structure is shown in Table 8.4. The
first line is a comment line with a brief description of the specimen (ignored by the
program). The second line has the unit cell dimensions of the specimen in units of
Angstroms. Each following line is the coordinates for one atom. The first number
Zatom is the atomic number for the atom. The next three numbers are its three-
dimensional coordinates (xpos,ypos,zpos). All of the coordinates are assumed to be
between (0,0,0) and (ax,by,cz) (i.e., the coordinates are positive). The fifth number
is the occupancy for the atom (as in atompot). The last number on the line, wobble,
is the standard deviation (in Angstroms) of the rms displacement if random thermal
displacements are used. (This is the rms value in each direction and not the 3D rms
value.) These displacements are generated using a random number generator with a
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Table 8.4 The format of the input data for autoslic and autostem and incostem. The first line is
a comment line (ignored by the program)

<comment line>

ax by cz

Zatom1 xpos1 ypos1 zpos1 occ1 wobble1

Zatom2 xpos2 ypos2 zpos2 occ2 wobble2

: : : : : :

ZatomN xposN yposN zposN occN wobbleN

−1

The second line is the unit cell dimensions of the specimen. Each line following the second line is
the atomic number and position of one atom in the specimen. There may be an arbitrary number
of different atoms, each with its own atomic number, position, and thermal vibration amplitude

Gaussian distribution. The initial seed for the random number generator is obtained
from the clock() function, and should produce a different (pseudo-random) result
each time the program is run.

The specimen can be expanded to an arbitrary number of unit cells using the
unit cell dimensions. The specimen would then be periodic and it would be better
to use mulslice. However this feature is useful for simulating the effects of random
thermal vibration, because random displacements can be added to the replicated
unit cell coordinates to generate an essentially non-periodic structure. The random
thermal displacements can be scaled with a semi-classical temperature law as:

wobble = wobble0

√
T

300
(8.3)

where wobble0 is the value appearing in the input file. Although this is not very
rigorous it provides a simple methods of changing all of the thermal displacements
with a single control variable. The apparent temperature can be set to some
nonphysical value to get the actual scaling for a more appropriate scaling law if
necessary.

autoslic can print out a table of values for selected beams versus thickness.
The beam (or Fourier coefficient) is specified by its crystallographic index (h,k);
however, this is the index in the super cell which is not necessarily the same as the
primitive unit cell.

8.4.1 Fixed Beam Calculation

The previous examples were calculations of real space images. This example
will use autoslic to calculate a convergent beam diffraction (CBED) pattern of
a specimen with thermal vibrations. This program is not limited to diffraction
patterns and can calculate images as well, just as atompot and mulslice can
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calculate diffraction patterns as well as images. Higher order aberrations may also
be included.

The program autoslic can calculate a CBED pattern including thermal vibrations.
A focused probe at a specified position is transmitted through the specimen and the
square modulus of the Fourier transform of the exit wave function is the CBED
pattern. A conventional electron diffraction pattern can also be calculated if the
incident wave function were a plane wave (possible with this program but is not
shown here). Thermal diffuse scattering (TDS) can be modeled by adding a set of
random Gaussian thermal offsets in the atomic positions to produce a snapshot of
one phonon configuration in the frozen phonon approach. One set of displacements
produces one noisy CBED pattern. Averaging the CBED over several different
sets of random displacements produces a time averaged TDS CBED pattern. Each
set of random displacements is by definition independent so it is computationally
convenient to calculate each CBED pattern in parallel, one thread (or CPU) per
each set of displacements (using openMP).

A sample run is shown below and the resulting CBED pattern is shown in
Fig. 8.3. The input data for this run is in the file si100.xyz shown in Table 8.5. Each
silicon atom is given an rms random displacement of 0.078 Å, to simulate thermal
diffuse scattering. Each phonon configuration is launched independently at about
the same time. Each CPU echoes its configuration index at about the same time so
the final thread order is listed in more or less random order (which looks odd).

Fig. 8.3 The results of the
autoslic for a convergent
beam diffraction pattern of
100 silicon averaged over 16
phonon configurations. The
image intensities are shown
on a logarithmic scale
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Table 8.5 The autoslic input data for 100 silicon in xyz format

one unit cell of 100 silicon
5.43 5.43 5.43

14 0.0000 0.0000 0.0000 1.0 0.078
14 2.7150 2.7150 0.0000 1.0 0.078
14 1.3575 4.0725 1.3575 1.0 0.078
14 4.0725 1.3575 1.3575 1.0 0.078
14 2.7150 0.0000 2.7150 1.0 0.078
14 0.0000 2.7150 2.7150 1.0 0.078
14 1.3575 1.3575 4.0725 1.0 0.078
14 4.0725 4.0725 4.0725 1.0 0.078
-1

<---- run program autoslic ---->

autoslic(e) version dated 28-mar-2019 (ejk)
Copyright (C) 1998-2019 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license

perform CTEM multislice with automatic slicing and FFTW
and multithreaded using openMP

Name of file with input atomic coord. in x,y,z format:
>si100.xyz
Replicate unit cell by NCELLX,NCELLY,NCELLZ :
>6 6 40
Name of file to get binary output of multislice result:
>sicbed.tif
Do you want to include partial coherence (y/n) :
>n
Do you want to calculate CBED with TDS (y/n) :
>y
Spherical aberration Cs3, Cs5(in mm.):
>1.3 0.0
Defocus (in Angstroms) =
>555
Objective aperture (in mrad) =
>8.91
type higher order aber. name (as C32a, etc.) followed
by a value in mm. (END to end)
>END
CBED probe position (in Ang.):
>17.0 16.0
Incident beam energy in kev:
>100
Wavefunction size in pixels, Nx,Ny:
>512 512
Crystal tilt x,y in mrad.:
>0 0
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Slice thickness (in Angstroms):
>1.3575
Do you want to include thermal vibrations (y/n) :
>y
Type the temperature in degrees K:
>300
Type number of configurations to average over:
>16
Random number seed initialized to 1561944323
Do you want to output intensity on a log scale (y/n) :
>y
electron wavelength = 0.0370144 Angstroms
11520 atomic coordinates read in
one unit cell of 100 silicon
Size in pixels Nx, Ny= 512 x 512 = 262144 beams
Lattice constant a,b = 32.58, 32.58
Total specimen range is
0 to 31.2225 in x
0 to 31.2225 in y
0 to 215.842 in z
Range of thermal rms displacements (300K) = 0.076 to 0.076
calculate CBED
fit from r= 0.01 to r= 5
193 pixels in obj. apert.
configuration # 1
configuration # 11configuration # 5

configuration # 14
configuration # 9
configuration # 10
configuration # 12
configuration # 3
configuration # 15
configuration # 13
configuration # 7
configuration # 16
# 3 total intensity = 0.988375
configuration # 4
# 12 total intensity = 0.988954
# 9 total intensity = 0.987783
# 15 total intensity = 0.988593
# 10 total intensity = 0.987985
# 11 total intensity = 0.988536
# 16 total intensity = 0.98732
# 1 total intensity = 0.988416
configuration # 2
# 7 total intensity = 0.988016
configuration # 8
# 14 total intensity = 0.988587
# 13 total intensity = 0.987927
# 5 total intensity = 0.987747
configuration # 6
# 4 total intensity = 0.988971
# 2 total intensity = 0.989023
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# 6 total intensity = 0.988558
# 8 total intensity = 0.987621
write azimuthal averaged intensity vs.
spatial frequency k, into file azimuth.dat

pix range -1.88946 to 7.00333 real,
0 to 0 imag

Total CPU time = 13.372 sec.
wall time = 13.372 sec.

8.4.2 Scanned Beam Calculation

The program autostem calculates a high-resolution ADF-STEM or scanning con-
focal image of a specimen that is described by a list of atoms and their positions.
In ADF mode the detector geometry may be described as an annulus bounded by
two polar angles or a segment bounded by two azimuthal angles and two polar
angles. The resulting signals may be combined using sumpix to produce a variety
of shaped detectors. The atan2() function is used to denote the segments in the
azimuthal direction, which is defined only for angle between −180 and +180◦, so
the segments cannot cross this boundary (although two adjacent segments might be
added together to achieve a similar result).

autostem is a combination of autoslic and stemslic with a few extra tricks to
dramatically reduce the CPU time and make it easier to produce ADF STEM images
with the frozen phonon approximation. A large fraction of the CPU time is used in
the calculation of the transmission functions for each slice, which are all different
with phonons. stemslic reuses many identical slices to reduce CPU time, but this
does not work with the frozen phonon method or amorphous specimens. autostem
reduces the CPU time by reusing the transmission function for several probes (using
lots of CPU memory). For an image it will do a whole line of the image at one
time using the same transmission function. The statistics seem to work out if there
are enough phonon configurations (i.e., adjacent probe positions are not really
independent for phonons). This produces a large improvement in speed, making
this calculation practical (close to the same time for one phonon configuration as
stemslic). autostem also does all of the averaging (over phonon configurations) in
memory with a single simple output file rather than requiring the user to calculate
the average with a separate program. This process is generally transparent to the
user (except for being much faster). For example, to calculate a 128×128 image,
autostem will propagate 128 probes (each 512×512 typically) at once (using a lot
more memory) and repeat for 128 lines and also repeat both steps for each phonon
configuration.

This program can save multiple thicknesses in one run to avoid multiple runs
for intermediate thickness and includes higher order aberrations for an aberration-
corrected microscope. The thickness levels are measured from the beginning of the
specimen (unit cell). It propagates many probes at once which is much faster but
uses much more memory (it is not hard to run out of memory on a 32 bit computer).
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In addition this program is multithreaded. If running on a computer with more than
one processor in a shared memory configuration (SMP), the program will use all
available CPUs (up to one per probe) to reduce the total computation time (using
openMP). Although it may still take a lot of CPU time for some specimens, it is
much faster than other approaches (for ADF-STEM with TDS) and can run by itself
most of the time. There is also a GPU version of autostem that further reduces the
CPU time.

Confocal mode has a lot in common with ADF-STEM so this program can
calculate confocal results by just adding an extra lens on the exit.

8.4.2.1 Atomic Coordinates

This program reads in a 3D atomic coord. in xyz format (Table 8.4), automatically
slices the specimen (as autoslic), calculates ADF-STEM images and line scans
(as stemslice), and integrates over phonon configurations if needed. The atomic
coordinates may be randomly displaced to simulate thermal motion (the frozen
phonon approx.) and then sorted by z as in autoslic. The calculation starts slightly
before the beginning of the specimen (lowest z) with the specified defocus value,
and continues until slightly past the specimen (covering a distance slightly larger
than the super cell of the specimen).

8.4.2.2 Sample Run

Below is an example of running autostem in one mode. Lines beginning with > are
typed in by the user (without the >). The other lines are printed by the program.
There are many (almost too many) different modes of this program. It can produce
a single line scan or a whole image. There is also an xz mode in which the line
scan is saved at all thickness levels and output in image form, which is a convenient
visual representation of the fringe contrast versus depth. This example uses only two
phonon configurations for simplicity which is not sufficient. In practice something
like 10–20 configurations should be used (averaged over). Figure 8.4 shows the
results for xz mode (other figures in this book use other modes). Two detector
geometries are for ADF-STEM and one is for a confocal detector, which adds some
extra questions on the collector lens and a little CPU time for this extra step. The
initial point of the line scan is (xi, yi) and the final point is (xf , yf ). Several output
files are generated (different thickness levels, different detectors, etc.). The output
“.txt” file lists which files correspond to which parameters. The “.dat” file has the
line scan data and the “.tif” files have image data.
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Fig. 8.4 Example of autostem in xz mode (line scan vs. thickness), with the start of the specimen
(thin) at the bottom and the end (thick part) at the top. This illustrates how the lattice intensity
increases with thickness. The horizontal and vertical scales may be different. In this case, the scale
is 10 Å in the horizontal directions and 206 Å in the vertical direction. (a) First ADF detector and
(b) second ADF detector

<---- run program autostem ---->

autostem (ADF,confocal,segmented) version dated 30-jan-2019
(ejk)

Copyright (C) 1998-2019 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY
under the GNU general public license

Calculate STEM images using FFTW
and multithreaded using openMP
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To calculate 2D pos. aver. CBED, include a file name on
command line.

Name of file with input atomic potential in x,y,z format:
>si100.xyz
Replicate unit cell by NCELLX,NCELLY,NCELLZ :
>5 5 38
STEM probe parameters, V0(kv), Cs3(mm), Cs5(mm),

df(Angstroms), apert1,2(mrad) :
>200 1 0 450 0 10
type higher order aber. name (as C32a, etc.) followed
by a value in mm. (END to end)
>END
Do you want to add random pi/4 tunning errors for orders

2 to 5 (y/n) :
>n
wavelength = 0.0250793 Angstroms
Size of specimen transmission function Nx,Ny in pixels :
>512 512

Size of probe wave function Nx,Ny in pixels :
>512 512
Crystal tilt x,y in mrad. :
>0 0
Do you want to calculate a 1D line scan (y/n) :
>y
Do you want to save all depth information as xz image (y/n) :
>y
File name prefix to get output of STEM multislice result

(no extension):
>test1dbig
Number of detector geometries (>=1):
>3
Detector 1, type: min max polar angles(mrad) or radius(Ang.)
followed by m, A, or seg (ADF, confocal, segmented-mrad)
add phimin phimax (degrees) if segmented
>50 200 m
normal ADF detector
Detector 2, type: min max polar angles(mrad) or radius(Ang.)
followed by m, A, or seg (ADF, confocal, segmented-mrad)
add phimin phimax (degrees) if segmented
>80 200 m
normal ADF detector
Detector 3, type: min max polar angles(mrad) or radius(Ang.)
followed by m, A, or seg (ADF, confocal, segmented-mrad)
add phimin phimax (degrees) if segmented
>0 3 A
confocal detector
Collector lens parameters, Cs3(mm), Cs5(mm), df(Angstroms),

apert1,2(mrad) :
>1.3 0 700 0 10.37
Magnitude and angle of 2-fold astigmatism (in Ang. and

degrees):
>0 0
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Magnitude and angle of 3-fold astigmatism (in Ang. and
degrees):

>0 0
xi, xf, yi, yf, nout :
>1 11 5.43 5.43 64
Slice thickness (in Angstroms):
>1.36
Do you want to include thermal vibrations (y/n) :
>y
Type the temperature in degrees K:
>300
Type number of configurations to average over:
>2
Random number seed initialized to 1549075158
electron wavelength = 0.0250793 Angstroms
7600 atomic coordinates read in
one unit cell of 100 silicon
Lattice constant a,b,c = 27.15, 27.15, 206.34
save up to 152 thickness levels
Total specimen range is
0 to 25.7925 in x
0 to 25.7925 in y
0 to 204.982 in z
Range of thermal rms displacements (300K) = 0.076 to 0.076
Bandwidth limited to a real space resolution of 0.159082

Angstroms
(= 157.65 mrad) for symmetrical anti-aliasing.

Number of symmetrical anti-aliasing beams in probe = 91529
Number of beams in probe aperture = 373
output file size in pixels is 1 x 64
fit from r= 0.01 to r= 5
configuration # 1
The new range of z is -0.126899 to 205.178
configuration # 2
The new range of z is -0.115034 to 205.119
output file= test1dbig.dat
output file= test1dbig0.tif
test1dbig0.tif: output pix range : 2.35557e-005 to 0.0441806
output file= test1dbig1.tif
test1dbig1.tif: output pix range : 7.76159e-006 to 0.0198969
output file= test1dbig2.tif
test1dbig2.tif: output pix range : 0.18399 to 0.621195
Number of symmetrical anti-aliasing beams in trans. function

= 91529
The total integrated intensity range was:

0.99344 to 0.997537

CPU time = 85.421 sec.
wall time = 85.4213 sec.
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Fig. 8.5 Example of incostem calculation of graphene for 60 keV with an objective aperture of
30 mrad, a source size of 0.5 Å, and a defocus spread of 50 Å. (a) Ideal aberration free image
without noise and (b) C45a= 0.3 mm, C56a= 20 mm (all other geometric aberration assumed zero),
probe current 100 pAmp, dwell time 80µs. The scalebar is 2 Å

8.5 Program Incostem

A full ADF-STEM calculation can require a large amount of computer time. With a
large angle ADF detector the ADF-STEM image is mostly incoherent and fairly
well behaved which permits some approximations. The program incostem can
calculate an approximate ADF-STEM image very quickly using a simple incoherent
approximation as in Eq. 3.70. The partial scattering cross section for an individual
atom is calculated in the Moliere approx. (Eq. 5.18) and placed at the (x, y) position
of this atom. The intensity may be spread onto a few adjacent pixels if the atom does
not happen to be exactly on a single pixel. The position in z along the beam direction
is ignored. This produces a collections of small dots in the (x, y) plane with the
intensity of each dot proportional to the scattering cross section. This image is then
convolved with the STEM probe intensity. The final result is usually qualitatively
correct and very fast. Generally speaking, it is mostly correct, most of the time. This
approx. can be very helpful in getting a quick idea of how the image behaves as
the image parameters are changed and to debug the specimen structure file (i.e., are
all of the atoms in the right places). This approximation makes the program easier
to manage so a variety of extra features such as source size, defocus spread, and
noise can be added with a modest effort. The ADF-STEM signal is very small by
definition, so the minimum noise is due to the Poisson counting noise from the small
number of electrons in each pixel. There may be more noise from other sources but
this counting noise is the theoretical minimum noise.

This incoherent approximation is usually not quantitatively accurate for most
specimen. However, for the class of 2D specimens such as graphene this approxi-
mation is fairly accurate if the probe is small enough to illuminate only one atom at
a time. A sample run is shown below and the resulting images are shown in Fig. 8.5.
The run for the ideal image in Fig. 8.5a is not shown.
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<---- run program incostem ---->

incostem version dated 6-jul-2016 ejk
calculate ADF-STEM images for very thin specimens
using the incoherent image model
Copyright (C) 1998-2016 Earl J. Kirkland
This program is provided AS-IS with ABSOLUTELY NO WARRANTY

under the GNU general public license

Name of file with input atomic potential in x,y,z format:
>graphene.xyz
Replicate unit cell by NCELLX,NCELLY,NCELLZ :
>3 2 1
Name of file to get binary output of adf-stem result:
>graphene60noise.tif
Image size, Nx,Ny in pixels :
>256 256
STEM probe parameters, V0(kv), Cs3(mm), Cs5(mm),

df(Angstroms), apert(mrad):
>60 0 0 0 30
ADF detector angles thetamin, thetamax (in mrad) =
>60 200
type higher order aber. name (as C32a, etc.) followed
by a value in mm. (END to end)
>C45a 0.3
>C56a 20.0
>END
Source size at specimen (FWHM in Ang.):
>0.5
Defocus spread (FWHM in Ang.):
>50
Do you want to add electron counting noise (y/n) :
>y
Type total probe current (in pAmp) and dwell time

(in microSec):
>100 80
electron wavelength = 0.0486606 Angstroms
24 atomic coordinates read in
one unit cell of graphene
Lattice constant a= 7.368, b= 8.50783
Total specimen range is 0 to 7.368 in x
0 to 7.08986 in y
1.674 to 1.674 in z
probe size (FWHM-II) = 1.76572 Ang.
calculate the 2D specimen function...
the partial cross section for Z = 6 is 0.00117954 sq-Ang
CPU time = 0.034 sec.
final pix range: 0.000184443 to 0.000750999 (real)

-5.02552e-011 to 4.86611e-011 (imag)
scale by 49931.7
scaled pix range: 9.20956 to 37.4987 (counts)
Poisson noise added to 65536 out of 65536 pixels
final pix range: 0 to 58 (counts)
output only the real part
all done
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8.6 Program Computem

The set of programs above are all run from the command line. Many people
interested in high-resolution transmission electron microscopy may not be fond of
using the command line and prefer a graphical user interface (GUI). The program
computem combines most of the above programs under a simple to use GUI. Pro-
gramming a GUI on one computer platform can be as much work as programming
the numerical simulations. Every different computer platform (operating system)
uses a different programming interface. Rather than repeat this effort on every
different platform it is easier to use what is called a cross-platform software package
of which there are several available. The GUI program uses a common programming
interface, which is then translated into the platform in use. Writing a cross-platform
package is itself a significant effort but some generous programmers have done this
already and make them available. Two popular examples are WxWidgets [459] and
QT [38]. computem uses the WxWidgets package and can be compiled and run
on several different common operating systems. A sample screenshot is shown in
Fig. 8.6. WxWidgets attempts to make the GUI appearance and behavior conform
to the host system so it looks like other applications on that system. This make the
programming effort somewhat easier, but one drawback is that the available features
are limited to those that are available on all target systems.

Fig. 8.6 Example of computem graphical user interface (GUI) on a Microsoft Windows operating
system



Appendix A
Plotting Transfer Functions

The following scripts interactively calculate and plot transfer functions for the
CTEM and STEM on the screen or in publication quality hardcopy using Octave,
which is a free open-source package. Octave is relatively easy to use and provides
a graphical output on many popular computers in a nearly machine independent
manner. It is a complete programming language and has a variety of sophisticated
mathematical functions and procedures. Octave’s ease of use comes at a price, how-
ever. It is mostly an interpreted language (newer versions may have a just-in-time
compiler that improves performance) with the inherent speed penalty. However,
Octave’s fundamental operations are on matrices and vectors. If the problem is
vectorized (i.e., the operation is on a whole array or vector of numbers at one time),
then the performance penalty typically associated with an interpreted language is
partially overcome. Octave is well suited for small to medium calculations (such as
calculating and plotting transfer functions) but probably should not be used for large
numerical simulation.

Each of the three Octave programs ctemtf.m, stempsf.m, and stemmtf.m should
be called directly from the Octave command line. All files should be in the default
directory. The Octave functions do not need to be called directly but are called from
the other three programs. Each program first asks for the electron optical parameters.
Then it calculates and plots the appropriate function on the screen. The STEM
programs may take significantly longer time because they must calculate a Fourier-
Bessel transform. Once the graph appears on the screen it can be printed from the
command line using the standard Octave print command.

© Springer Nature Switzerland AG 2020
E. J. Kirkland, Advanced Computing in Electron Microscopy,
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A.1 CTEM

There is one Octave program and one Octave function (each is a separate file). A
sample output of each program is shown below (Fig. A.1) along with the source
listing.

• ctemtf.m Plot CTEM transfer function (calls ctemh.m below).
• ctemh.m Calculate the CTEM transfer function (see Eq. 3.44).

ctemtf.m
%
% Octave script ctemtf.m to plot CTEM transfer functions
% this script calls ctemh.m
%
% Cs3,5 = Spherical Aberration
% df = defocus
% kev = electron energy in keV
% ddf = chromatic aberation defocus spread
% beta = spread in illumination angles
%
disp( ’Plot CTEM transfer function’ );
p.kev = input(’Type electron energy in keV : ’);
p.Cs3 = input(’Type spherical aberration Cs3 in mm : ’);
p.Cs5 = input(’Type spherical aberration Cs5 in mm : ’);
p.df = input(’Type defocus df in Angstroms : ’);
p.ddf = input(’Type defocus spread ddf in Angs. : ’);
p.beta = input(’Type illumination semiangle in mrad : ’);
%
% electron wavelength
wav = 12.3986/sqrt((2*511.0+p.kev)*p.kev);

Fig. A.1 Example of CTEM
transfer function from the
Octave program ctemtf.m
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Cs = abs(p.Cs3);
if( Cs < 0.1 )

Cs = 0.1;
end
ds = sqrt( sqrt( Cs*1.0e7*wav*wav*wav ));
kmax = 2.5/ds;
k = 0.:(kmax/500):kmax; % 500 points
sinw = ctemh( k, p, 0 );
plot( k, sinw, ’k-’ );
axis([0, kmax, -1, +1]);
xlabel( ’Spatial Frequency (in 1/A)’);
ylabel( ’MTF’ );
s1 = sprintf(’E= %gkeV, Cs3= %gmm, ’, p.kev, p.Cs3);
s2 = sprintf(’ Cs5= %gmm, df= %gA, ’, p.Cs5, p.df);
s3 = sprintf(’Beta= %gmrad, ddf= %gA’, p.beta, p.ddf);
title([s1 s2 s3]);
hold on; % plot line through zero
x = [0, kmax];
y = [0, 0];
plot( x, y, ’k--’ );
hold off;

ctemh.m
function y = ctemh(k,params,type)
%
% Octave function ctemh.m to calculate CTEM bright
% field phase contrast transfer function with partial
% coherence for weak phase objects
% input array k has the spatial freq. values (in 1/A)
% input array params has the optical parameters
% params = [Cs, df, kev, ddf, beta]
% input type = 0 for phase contrast
% and 1 for amplitude contrast
% output array contains the transfer function vs k
%
% params.Cs3,5 = spherical aberration (in mm)
% params.df = defocus (in Angstroms)
% params.kev = electron energy (in keV)
% params.ddf = chrom. aberr. def. spread (in Angst.)
% params.beta = spread in illum. angles (in mrad)
%
% reference
% R. H. Wade and J. Frank, Optik 49 (1977) p.81
%

Cs3 = params.Cs3*1.0e7;
Cs5 = params.Cs5*1.0e7;
df = params.df;
kev = params.kev;
ddf = params.ddf;
beta = params.beta*0.001;
mo = 511.0; % electron rest mass in keV
hc = 12.3986; % in keV-Angstroms
wav = (2*mo)+kev;
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wav = hc/sqrt(wav*kev);
wavsq = wav*wav;
w1 = pi*Cs3*wavsq*wav;
w2 = pi*wav*df;
w3 = pi*Cs5*wavsq*wavsq*wav;
e0 = (pi*beta*ddf)^2;
k2 = k .* k;
wr = ((w3.*k2+w1).*k2-w2).*k*beta/wav;
wi = pi*wav*ddf.*k2;
wi = wr.*wr + 0.25.*wi.*wi;
wi = exp(-wi./(1+e0.*k2));
wr = w3*(1-2.0*e0.*k2)/3.0;
wr = wr.*k2 + 0.5*w1.*(1-e0.*k2);
wr = (wr.*k2 - w2).*k2./(1+e0.*k2);
if type == 0

y = sin(wr).* wi;
else

y = cos(wr).* wi;
end;

endfunction

A.2 STEM

There are two Octave programs and three Octave functions (each is a separate file).
The first integral over the lens aberration function is not well behaved, so an Octave
adaptive quadrature routine is used to gain efficiency and accuracy (in stemhr.m). A
sample output of each program is shown below (Figs. A.2 and A.3) along with the
source listing.

• stempsf.m Plot the STEM probe profile (calls stemhr.m below).
• stemtf.m Plot the STEM transfer function (calls stemhr.m and stemhk.m below).
• stemhr.m Calculate the STEM probe profile (see Eq. 3.74).
• stemhk.m Calculate the STEM transfer function (see Eq. 3.75, calls stemhr.m).

stempsf.m

% stempsf.m
% Octave file to plot the STEM probe profile
% this script calls stemhr.m
%
clear;
disp( ’Plot STEM probe intensity’ );
p.kev = input( ’Type electron energy in keV : ’);
p.Cs3 = input( ’Type spherical aberration Cs3 in mm : ’);
p.Cs5 = input( ’Type spherical aberration Cs5 in mm : ’);
p.df = input( ’Type defocus df in Angstroms : ’);
p.amax = input( ’Type obj. apert. semiangle in mrad : ’);
%
% electron wavelength
wav = 12.3986/sqrt((2*511.0+p.kev)*p.kev);
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Fig. A.2 Example of STEM
probe intensity profile output
from the Octave program
stempsf.m
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Fig. A.3 Example of the
STEM transfer function
output from the Octave
program stemtf.m
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Cs = abs(p.Cs3);
if( Cs < 0.1 )

Cs = 0.1;
end
rmax = sqrt( sqrt( Cs*1.0e7*wav*wav*wav ));
npts = 300; % number of points in curve
r = 0:(rmax/npts):rmax;
psf = stemhr( r, p );
plot( r, psf, ’k-’ );
xlabel( ’radius in Angstroms’);
ylabel( ’PSF’ );
s1 = sprintf(’Cs3= %gmm, Cs5= %gmm, ’, p.Cs3, p.Cs5 );
s2 = sprintf(’ df= %gA, ’, p.df);
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s3 = sprintf(’E= %gkeV, OA= %gmrad’, p.kev, p.amax);
title([s1 s2 s3]);

stemtf.m
% stemtf.m
% Octave file to plot the STEM probe mtf
% this script calls stemhk.m
%
clear;
disp( ’Plot STEM transfer function’ );
p.kev = input( ’Type electron energy in keV : ’);
p.Cs3 = input( ’Type spherical aberration Cs3 in mm : ’);
p.Cs5 = input( ’Type spherical aberration Cs5 in mm : ’);
p.df = input( ’Type defocus df in Angstroms : ’);
p.amax = input( ’Type obj. apert. semiangle in mrad : ’);
%
% electron wavelength
wav = 12.3986/sqrt((2*511.0+p.kev)*p.kev);
kmax = 2*0.001*p.amax/wav;
npts = 500; % number of points
k = 0:(kmax/npts):kmax;
mtf = stemhk( k, p );
plot( k, mtf, ’k-’ );
xlabel( ’k in inv. Angstroms’);
ylabel( ’MTF’ );
s1 = sprintf(’Cs3= %gmm, Cs5= %gmm, ’, p.Cs3, p.Cs5 );
s2 = sprintf(’ df= %gA, ’, p.df);
s3 = sprintf(’E= %gkeV, OA= %gmrad’, p.kev, p.amax);
title([s1 s2 s3]);

stemhr.m
function psf = stemhr(r,params)
%
% Octave function stemhr.m to calculate
% STEM probe profile vs. r
% input array r has the radial positions (in Angs.)
% input variable params has the optical parameters
% <Cs, df, kev, amax> as elements
% output array contains the transfer function
%
% param.Cs3 = third order spherical aberration (in mm)
% param.Cs5 = fifth order spherical aberration (in mm)
% param.df = defocus (in Angstroms)
% param.kev = electron energy (in keV)
% param.amax = objective aperture (in mrad)
%

global w2 w4 w6 intr; % constants for lensr,i
df = params.df;
kev = params.kev;
amax = params.amax*0.001;
% electron wavelength
wav = 12.3986/sqrt((2*511.0+kev)*kev);
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kmax = amax/wav;
w2 = wav*pi*df;
w4 = 0.5*pi*params.Cs3*1.0e7*wav*wav*wav;
w6 = pi*params.Cs5*1.0e7*wav*wav*wav*wav*wav /3.0;
nr = length( r );
for ir=1:nr,

intr = 2*pi*r(ir);
tol = [1.0e-7, 1.0e-7]; % rel, abs tolerance
% use adaptive quadrature because integrand
% not well behaved
hr(ir) = quadcc( @lensr, 0, kmax, tol );
hi(ir) = quadcc( @lensi, 0, kmax, tol );

end;
psf = hr.^2 + hi.^2;
a = max(psf);
psf = psf/a; % norm. probe intensity to a max. of 1

endfunction
%
% dummy functions to integrate (used by stempsf.m)
% Octave function lens.m to calculate complex
% aberr. function
% input k (in 1/Angs.), wav = electron wavelength
%
% chi = pi*wav*k^2*[ 0.5*Cs3*wav^2*k^2
% + (1/3)*Cs5*wav^4*k^4 - df ]
% return exp( -i*chi )
%
% globals:
% w2 = pi*defocus*wav
% w4 = 0.5*pi*Cs3*wav^3
% w6 = (1/3)*pi*Cs5*wav^5
% intr = 2*pi*r
%
function expchi = lensr(k) % real part

global w2 w4 w6 intr; % constants from stemhr.m
k2 = k.*k;
w = ( (w6.*k2 + w4) .*k2 - w2 ).*k2;
expchi = cos(w) .* besselj( 0, intr.*k ).*k;

endfunction

function expchi = lensi(k) % imag. part
global w2 w4 w6 intr; % constants from stemhr.m
k2 = k.*k;
w = ( (w6.*k2 + w4) .*k2 - w2 ).*k2;
expchi = sin(-w) .* besselj( 0, intr.*k ).*k;

endfunction
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stemhk.m
function mtf = stemhk( k, params )
%
% Octave function stemhk.m to calculate STEM mtf vs. k
% input array k has the spatial freq. (in inv. Angs.)
% input variable params has the optical parameters
% [Cs, df, kev, amax] as elements
% output array contains the transfer function
%
% param.Cs3 = third order spherical aberration (in mm)
% param.Cs5 = fifth order spherical aberration (in mm)
% param.df = defocus (in Angstroms)
% param.kev = electron energy (in keV)
% param.amax = objective aperture (in mrad)
%

Cs3 = params.Cs3;
df = params.df;
kev = params.kev;
amax = params.amax*0.001;
% first calculate the psf using stemhr()
nr = 500; % number of points in integral over r
wav = 12.3986/sqrt((2*511.0+kev)*kev); % elect. wavelength
Cs = abs(Cs3);
if( Cs < 0.1 ) % guess if Cs3=0

Cs = 0.1;
end
rmax = 2.0*sqrt( sqrt( Cs*1.0e7*wav*wav*wav) );
r = 0:(rmax/nr):rmax;
psf = stemhr( r, params );
% next inverse psf to get mtf
nk = length( k );
for ik=1:nk,

h = psf .* besselj( 0, 2*pi*r*k(ik) ) .*r;
mtf(ik) = sum(h);

end;
a = mtf(1);
mtf = mtf/a; % normalize mtf(0)=1

endfunction



Appendix B
The Fourier Projection Theorem

It seems like a two-dimensional inverse Fourier transform should never be applied
to a function of three dimensions. However, the inverse two-dimensional transform
of a three-dimensional object will end up producing the desired inverse transform
with respect to two of the dimensions and integrating (or projecting) along the third
dimension.

To see that this is true, define a function f (x, y, z) that is a function of three
spatial coordinates x, y, z. The three-dimensional Fourier transform of this function
will be F(kx, ky, kz) which is a function of three reciprocal space coordinates
kx, ky, kz.

F(kx, ky, kz) = FT3D[f (x, y, z)]

=
∫

x,y,z

f (x, y, z) exp[2πi(xkx + yky + zkx)]dxdydz (B.1)

Next calculate the inverse Fourier transform in two dimensions of the three-
dimensional object F(kx, ky, kz):

FT −1
2D [F(kx, ky, kz)] =

∫

kx,ky

F (kx, ky, kz) exp[−2πi(xkx + yky)]dkxdky (B.2)

and then substitute the original expression for F(kx, ky, kz) from Eq. B.1 using
dummy variable r, s, t in place of x, y, z for the second occurrence of the spatial
coordinates inside the integrand:

FT −1
2D [F(kx, ky, kz)] =

∫

kx,ky

{∫

r,s,t

f (r, s, t) exp[2πi(rkx + sky + tkz)]drdsdt

}

× exp[−2πi(xkx + yky)]dkxdky
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=
∫

r,s,t

f (r, s, t)

{∫

kx

exp[2πi(r − x)kx]dkx

}

×
{∫

ky

exp[2πi(s − y)ky]dky

}

exp[2πitkz]drdsdt

=
∫

r,s,t

f (r, s, t)δ(r − x)δ(s − y) exp[2πitkz]drdsdt

=
∫

t

f (x, y, t) exp[2πitkz]dt (B.3)

where δ(x) is the Dirac delta function. Finally if kz = 0 and z is substituted for the
dummy variable t this leaves:

FT −1
2D [F(kx, ky, kz = 0)] =

∫

z

f (x, y, z)dz (B.4)

Therefore if a two-dimensional inverse Fourier transform is applied to a function
of three dimensions the result is an inverse transform over the appropriate two
dimensions and a projection (or integral) over the third dimension if the missing
third reciprocal space coordinate (kz above) is set to zero.



Appendix C
Atomic Potentials and Scattering Factors

The projected atomic potential of the atoms in the specimen is a necessary starting
point for the calculation of an electron microscope image. The basic principles
of quantum mechanics enable a well-defined calculation of the atomic potentials
for single isolated atoms. The potentials for all of the atoms in the periodic chart
have been calculated and the results are tabulated below. Treating the specimen as a
collection of single isolated atoms neglects the change in electronic structure due to
bonding etc. in the solid. This should be a small effect because electron scattering is
mainly from the nucleus with the core and valence electrons screening the nucleus.
However, the low angle scattering may be in error due to this approximation. This
might give rise to problems with phase contrast bright field images; however, high
angle annular dark field (STEM) images should be more accurate. A rigorous
calculation of the electronic structure of solids including bonding is currently an
active area of research. Including the effects of bonding in a rigorous and general
manner in the calculation of electron microscope images is beyond the capability of
generally available computers at present and is not considered here.

Herman and Skillman [203] tabulated the electron wave functions resulting
from Hartree–Fock calculations. The atomic scattering factors for X-rays and
electrons have been tabulated in many places and a representative sample is given
in Table C.1. The data given by Doyle and Turner [100] and Doyle and Cowley
[99] (using the program of Coulthard [71]) is generally considered to be the most
accurate. However, Doyle and Turner do not calculate the whole periodic chart and
Doyle and Cowley do not calculate the scattering factors for high angles. Rez et
al. [417–419] have recently published a new set of scattering factors that covers
the whole periodic chart and includes high angle scattering. The scattering factor
table presented below is most similar to that of Doyle and Turner [100], Doyle and
Cowley [99], and Rez et al. [417, 418] (i.e., all of these use a relativistic Hartree–
Fock calculation) and covers the whole periodic chart including high scattering
angles. Bonham and Fink [40] have also reviewed electronic structure calculations
for electron scattering in an energy range appropriate for electron microscopy.
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Table C.1 Some tabulations of atomic potentials and scattering factors

Author Year Quantity Z Comments

Bragg and West [47] 1929 fx 8, 9, 11–14,

17, 19, 20, 26 TF, H

James and Brindley [242] 1931 fx 1–22, 29, 37 TF, H

McWeeny et al. [339] 1951 fx 1–10 Analytical

Vand et al. [511] 1957 fx 1–100 Param.

Ibers [223] 1958 fe 1–12, 18,

20, 25–80 TFD, H, HF

Freeman [146, 147] 1959 fx 3, 4, 6–11, 13, 14

17, 19, 20, 22

23, 25, 26, 31, 81 H, HF

Forsyth and Wells [139] 1959 fx 1–92 Param.

Dawson [91] 1961 fe 9–20, 36 HF

Ibers and Vainshtein [224] 1962 fx 1–104 HF, TF

Smith and Burge [464] 1962 fe 1–18, 20–104 Param.

Cromer and Waber [88, 89] 1965 fx 2–103 RHF, TF

Mott and Massey [364] 1965 pce 3–36,

47, 74, 80 HF

Cox and Bonham [82] 1967 fe 1–54 Param.

Cromer and Mann [87] 1968 fx 2–103 HF

Doyle and Turner [100] 1968 fx,fe 2–38, 42,

47–56, 63, 79,

80–83, 86, 92 RHF

Hasse [176–178] 1968 fe 1–92 HF, TF

Doyle and Cowley [99] 1974 fe 2–98 HF, RHF

Fox et al. [140] 1989 fx 2–98 Param.

Weickenmeier and Kohl [530] 1991 fx 2–98 Param.

Rez et al. [417–419] 1994 fx 2–92 RHF

Waasmaier and Kirfel [513] 1995 fx 2–92 Param.

Peng et al. [395] 1996 fe 1–98 Param.

Wang et al. [518] 1996 fx 2–18 RHF

Su and Coppens [479] 1997 fx 1–54 RHF, Param.

Lobato and van Dyck [318] 2014 fx, fe 1–103 RHF, param.

TF Thomas Fermi, TFD Thomas-Fermi-Dirac, H Hartree, HF Hartree–Fock, RHF Relativistic
Hartree, fx X-ray, fe electron scattering factor, pce partial cross section (electrons), param.
parameterized

C.1 Atomic Charge Distribution

The distribution of charge in an atom must be found from a quantum mechanical
description of the electrons and nucleus of the atom. Unfortunately the hydrogen
atom is the only element in the periodic chart that can be solved analytically.
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With more than one electron the atom becomes a many-body problem and requires
a numerical solution with suitably approximations. The Hartree–Fock procedure
(see for example Hartree [190], Froese-Fischer [151], Froese-Fischer et al. [137],
and Cowan [72]) is a method of calculating the electron wave functions of all of
the electrons in an atom assuming a central potential model. It is a variational
calculation to minimize the total energy of the many-electron atomic system, and
includes the interaction of the electrons with each other and with the nucleus.
The total wave function is fashioned so that it is antisymmetric on the exchange
of identical electrons, which leads to the so-called exchange terms. Hartree–Fock
starts with an initial guess of the electron wave functions (such as the hydrogenic
analytical form). From this guess a net potential for each electron orbital is
calculated due to the other electrons and the nucleus (each orbital sees a slightly
different potential because it does not interact with itself). From this potential a new
set of wave functions is calculated and the process repeats until a self-consistent
answer is obtained. Each orbital produces one coupled integral-differential equation
(one equation per orbital). With the assumption of a central potential the angular
integrations may be done analytically, so it is only the radial portion of the wave
function that need to be calculated. The wave function is sampled on a discrete grid
versus radius.

The kinetic energy of the inner shell electrons of the heavier elements such
as gold is of the order of 100 keV, which produces some relativistic effects. A
relativistic form of the Hartree–Fock procedure uses the Dirac relativistic wave
equation instead of the nonrelativistic Schrödinger equation. Grant [165, 166] has
given a thorough discussion of relativistic Hartree–Fock theory. With the Dirac
equation the wave function for each electron has two components P(r) and Q(r)

instead of one and there is a separate orbital for each spin state of the electron.
This produces roughly twice as many sets of coupled integro-differential equations
to solve and generally increases the amount of computation significantly. Desclaux
[95], Grant et al. [167], and Dyall et al. [108] have published extensive Dirac-Fock
programs.

A program based on the average configuration theory (Grant [166]) was used to
calculate the relativistic wave functions for all atoms in the periodic chart (atomic
number Z = 3 to Z = 103) except hydrogen (which is known analytically). Helium
(Z = 2) was calculated nonrelativistically. The atomic radial charge distribution,
X-ray and electron scattering factors, and the projected atomic potential were then
calculated from the electron wave functions. The configurations of the electrons
in each atom were obtained from standard tables (for example, Wiese and Martin
[532], appendix 5 of Morrison et al. [361], table 19.3a of Haken and Wolf [183]).
The wave functions vary rapidly near the nucleus, so it is more efficient to change
the independent variable from r to t = log r with equal spacings in t . This produces
a fine sampling (small grid size) at small r where the wave function is changing
rapidly but keeps the total number of grid points manageably small by increasing
the grid size at large r where the wave function varies slowly. Each wave function
was sampled with 500 points in each component (1000 points all together). The
wave functions are initially set to the relativistic hydrogenic wave functions that are
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known analytically (Burke and Grant [50]). At each iteration the effective electron-
electron interaction is calculated from the current electron wave functions and a new
set of electron wave functions is then calculated. The calculation proceeded until the
energy eigenvalues changed by less than one part in 1 × 106. The minimum radius
was set to r = 1 × 10−6a0 and the maximum radius varied between 8a0 and 15a0
(where a0 = 0.5292 Å is the Bohr radii). The energy and size (< r2 >) of each
orbital are in good agreement with those tabulated by Desclaux [94].

For historical reasons it was more convenient to use the radial charge density
(calculated from the electron wave functions) than to produce the atomic potentials
directly. First the X-ray scattering factors were calculated from the wave functions.
Then the electron scattering factors and hence the projected atomic potential were
obtained from the X-ray scattering factors via the Mott–Bethe formula (i.e., the
electron scattering factor in the first Born approximation is the Fourier transform of
the atomic potential).

The relativistic electron wave function of each atomic orbital i consists of two
components Qi(r) and Pi(r) of the radial portion of the Dirac wave equation and an
occupancy ci for each atomic orbital. The radial distribution of the electron charge
ρ(r) is calculated from the wave function as:

4πr2ρ(r) =
∑

i

ci

[
|Qi(r)|2 + |Pi(r)|2

]
(C.1)

Both sides of this equation have units of electrons per Angstrom. r is the three-
dimensional radial coordinate. The wave functions are sampled on an exponential
grid to get more points near the nucleus where the wave function is changing rapidly.
The r coordinates are defined on a grid as:

rn = Rmine
nΔt ; n = 0, 1, 2, . . . , (Nr − 1) (C.2)

Rmin is the minimum radius and Δt is a logarithmic spacing (t = log(r)) in the
radial coordinate r . This is equivalent to changing the independent variable from r

to log(r). Remember that Qi(0) = Pi(0) = 0.
An example of the radial charge distribution of mercury (Z = 80) is shown

in Fig. C.1 for both a relativistic and nonrelativistic calculation (using the average
configuration theory as defined by Cowan [72]). The main effect of relativity is
that the inner electron shell moves closer to the nucleus. This changes the effective
screening of the nucleus and can have a large effect on the valence shell energies for
heavy elements.

C.2 X-ray Scattering Factors

The X-ray scattering factor for a spherically symmetric charge distributions is
defined as:
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Fig. C.1 The radial electron
charge density 4πr2ρ(r)

versus radius for Hg
(Z = 80) calculated
relativistically (solid line) and
nonrelativistically (dashed
line)

fX(q) = 4π

∫
r2ρ(r)

sin(2πqr)

2πqr
dr (C.3)

where q = sin(α)/λ is the magnitude of the three-dimensional wavevector that
is the difference between the incident and scattered X-ray. λ is wavelength and α

is the scattering semi-angle. fx(q) is a dimensionless quantity corresponding to
the number of electrons. Most numerical integration formulas for tabulated data
assume that the data is sampled on a regularly spaced grid and not an exponential
grid as used here. The integral can however be converted to a regular spacing in
the independent variable by changing the integration variable from dr to d(ln r) =
dr/r .

fX(q) =
∫ [

4πr2ρ(r)
] sin(2πqr)

2πq
d(ln r) (C.4)

The integrand is now sampled at regularly spaced intervals of Δt = Δln(r) and can
be easily integrated numerically. Simpson’s three point formula was used here.

For neutral atoms fX(0) = Z where Z is the atomic number, so integrating the
charge distribution to find fX(0) is only a test of the program.

C.3 Electron Scattering Factors

It is traditional to tabulate the electron scattering factor fe(q) in the first Born
approximation. The scattering factor is the amplitude for scattering of a single
electron by a single atom. The first Born approximation is totally inadequate for
calculating electron scattering and electron microscope image (Zeitler [543, 544],
Glauber and Shoemaker [157]). However, the first Born approximation is useful
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because it is the three-dimensional Fourier transform of the atomic potential (see
for example section 38 of Schiff [444]):

fe(q) = 2πm0e

h2

∫
V (r) exp(2πiq · r)d3r

= 1

2πea0

∫
V (r) exp(2πiq · r)d3r (C.5)

where V (r) is the 3D atomic potential of the atom, m0 is the rest mass of the
electron, e is the charge of the electron, h is Planck’s constant, and a0 = h̄2/m0e

2 =
0.5292 Å is the Bohr radius. fe(q) is in units of Å. For the case where the atom is
spherically symmetric this reduces to:

fe(q) = 1

πea0q

∫ ∞

0
V (r) sin(2πqr)rdr (C.6)

The electron scattering factor in the first Born approximation is also simply
related to the X-ray scattering factor for an atom with atomic number Z using the
Mott–Bethe [32, 34, 363, 364] formula:

fe(q) = 2m0e
2

h2

(
Z − fX(q)

q2

)
= 1

2π2a0

(
Z − fX(q)

q2

)
(C.7)

(Bethe [33] has recently given an English language translation of his original
German publication.) There is a singularity at q = 0, so the Mott–Bethe formula
must be replaced by the following expression due to Ibers [223]:

fe(0) = 4π2m0e
2

3h2 Z < r2 >= Z

3a0
< r2 > (C.8)

< r2 > =
∫∞

0 r2[4πr2ρ(r)]dr
∫∞

0 [4πr2ρ(r)]dr
(C.9)

where < r2 > is the mean square radius of the electrons in the atom. Note that
neutral atoms also satisfy:

Z =
∫ ∞

0
[4πr2ρ(r)]dr (C.10)

The Mott–Bethe formula is equivalent to solving Poisson’s equation in reciprocal
space to obtain the potential distribution from the charge distribution (including the
point charge of the nucleus). For historical reasons it is more convenient to calculate
the atomic potentials in a round-about manner from the Mott–Bethe formula and the
X-ray scattering factors.
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If the valence shell electrons are not in the s (l = 0) angular momentum state,
then the charge distribution in the atom is not necessarily spherically symmetric
as assumed in the expressions for the scattering factors. McWeeny [339, 340] and
Freeman [146, 147] have shown that the X-ray scattering from aspherical atoms
(p-state valence shells) may vary by approximately 5–10% with azimuthal angle in
low Z atoms. This difference shows up mainly at low scattering angles. The Mott–
Bethe formula also implies that high angle electron scattering is mainly due to the
nucleus and becomes insensitive to the X-ray scattering factor at high scattering
angles. Bonding in the solid should produce a similar order of magnitude error in
the electron scattering factor at small scattering angles. This 5–10% error should be
regarded as an estimate of the error in image simulation produced by treating a solid
as a collection of isolated (nonbonded) spherically symmetric atoms (i.e., by using
the values tabulated here).

C.4 Parameterization

The electron and X-ray scattering factors for all neutral atoms with atomic numbers
Z = 2 through Z = 103 were calculated using the relativistic Hartree–Fock
program as outlined above. The results were tabulated for scattering angles 0 <

q < 12Å−1 (equivalent to 0 < s < 6 in the notation of Doyle and Turner [100])
at intervals of 0.05 Å−1 and parameterized to make it easy to hard code into the
subroutine library used for the main programs. fe(q) is in units of Å and fx(q)

is in dimensionless units of electron number. A few low atomic number atoms
(2 ≤ Z ≤ 6) do not scatter appreciably at this high angle and so were stopped
when fx(q) < 0.010.

Hydrogen is the only atom that can be solved analytically. The (nonrelativistic)
electron distribution for hydrogen is:

ρ(r) = |ψ(r)|2 = 1

πa3
0

exp(−2r/a0) (C.11)

Using this expression yields:

fX(q) = (1 + π2a2
0q2)−2 (C.12)

< r2 > = 3a2
0 (C.13)

fe(q = 0) = a0 (C.14)

These analytical expressions for the scattering from hydrogen were also fit to the
same parameters as the rest of the atoms in the periodic chart for completeness,
although not strictly necessary.

There is a relatively large amount of data to represent the scattering factors.
The simulation programs could read in a large tabulation and interpolate it to
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obtain the potentials or scattering factors at every required point. Parameterizing
the scattering factors can considerably reduce the amount of required data and also
allow for easier analytical calculations although it is not necessarily required for
a simulation program. Any parameterization should have the correct asymptotic
form at high and low angles. Because the electron charge distribution in the atom
has a nonzero size the X-ray scattering factor fx(q) must approach zero at high
angles. The Mott–Bethe formula then implies that the electron scattering factor must
approach fe(q) ∝ s−2 at high angles. The parameterization must also approach a
constant value at q = 0. Doyle and Turner [100] had some success in fitting linear
combinations of Gaussians to the tabulated data. Gaussians fit well at low scattering
angles but fall off too rapidly at high angles. Weickenmeier and Kohl [530] have
proposed an alternate form that has the appropriate form at high angles, but is more
complicated to work with analytically. The following form has the appropriate form
at large and small angles and can be transformed analytically (see Eq. C.20):

fe(q) =
NL∑

i=1

ai

q2 + bi

+
NG∑

i=1

ci exp(−diq
2) (C.15)

where NL = 3 is the number of Lorenzians (first summation) and NG = 3 is
the number of Gaussians (second summation). The Lorenzians have the correct
behavior at high angles and the Gaussians empirically fit the behavior at low angles.
It is best to parameterize fe(q) and not fx(q) because of the singularity in the Mott–
Bethe formula. The inverse Mott–Bethe formula:

fx(q) = Z − 2π2a0q
2fe(q) (C.16)

is however well behaved everywhere, so if fe(q) is known, then it is easy to calculate
fx(q). Peng and Cowley [394] have shown that serious errors may result from
applying the Mott–Bethe formula to parameterize X-ray scattering factors. It is
much better to parameterize the electron scattering factors than the X-ray scattering
factors.

The actual parameters (ai, bi, ci , di) are found by performing a nonlinear least
squares fit of the numerical tabulation of the X-ray scattering factor fxj and electron
scattering factors fej at the angle qj to the form of fe(qj ) given in Eq. C.15. The
combined reduced χ2 fit:

χ2 = 1

2Nq − 2NL − 2NG

Nq∑

j=1

{[
fxj − fx(qj )

σxj

]2

+
[
fej − fe(qj )

σej

]2
}

= minimum (C.17)

is minimized. Nq is the number of points in the q direction and fx(qj ) is calculated
from the inverse Mott–Bethe formula and fe(qj ). The effective error of each data
point was set to:
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σxj = 10−3fx(0)

σej = 10−3fe(0) (C.18)

fe(q) and fx(q) sometimes differ by a factor or two or more (at the same q), so each
must be scaled before summing in the figure of merit χ2 to give equal weight to the
X-ray and electron scattering factors. This choice of errors gives a slight preference
for matching the scattering factors at low scattering angle but in practice does not
seem to hinder the fit at high scattering angles either. A value of χ2 ∼ 1 means
that the parameterization is good to about three significant figures on average at low
scattering angle (where fe and fx are a maximum).

The actual fit was performed with the Levenberg–Marquardt algorithm (for
example, see Press et al. [406]). The parameters were constrained to be positive
by fitting the square root of the parameters (and then squaring them in Eq. C.15).
The Levenberg–Marquardt algorithm is reasonably robust if it is started relatively
close to the correct values of the parameters. With a large number of degrees
of freedom (i.e., many free parameters) the algorithm frequently converges to an
incorrect answer (i.e., it is not globally convergent). The fit was greatly improved
by trying several different starting points and keeping only the best one. In practice
several hundred different starting points were generated for each atomic number
using a random number generator (with appropriate scaling). Also in many cases
the correct parameters are very close to the parameters for other atomic numbers,
so each fit was also tried by starting from the best-fit parameters for all other atoms.
There is one additional failure mode in which bi � 1 and ai � 1 but ai/bi ∼ 1.
This results in a constant value of fe at large angles which is not correct. Therefore
any fit with |bi | > 200 was rejected (in practice only a small number of cases
produce this response). The resulting parameters fit the tabulated values very well
in most cases but it should be noted that the parameters are probably not unique.
This fitting procedure is a relatively brute force solution but it only has to be done
once so it is not worth optimizing this procedure.

The resulting parameterization with 12 parameters (for each neutral atom) is
tabulated below. The parameters are listed for each atomic number Z at the end
of this chapter in the following order:

Z= 6, chisq= 0.143335
a1 b1 a2 b2
a3 b3 c1 d1
c2 d2 c3 d3

ai, bi, ci , and di have units of Å−1, Å−2, Å, and Å2 respectively. Although this
may seem like a large number of parameters they can be used for both X-ray and
electron scattering factors as well as the atomic potential. Some atoms such as He
(Z = 2) produce b1 ∼ b2 ∼ b3 which means that there is really only one Lorenzian.
However, other atoms require all six independent functions.

The figure of merit χ2 (Eq. C.17) is shown versus atomic number Z in Fig. C.2
as a solid line. Most atomic numbers have χ2 < 0.1 indicating a very good fit. The
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Fig. C.2 The figure of merit
χ2 of the parameterized form
of the X-ray and electron
scattering factors versus
atomic number Z. The
parameters are compared to
the data of Doyle and Turner,
Doyle and Cowley, and
Fox et al. in the dashed line
curve and to the current
calculation in the solid line
curve

error introduced by using the parameterized form instead of the tabulated form is
significantly less than the error introduced by ignoring the effects of bonding in the
solid.

If the previously tabulated values of fx(s) and fe(s) given by Doyle and Turner
[100], Doyle and Cowley [99], Cromer and Waber [89], and Fox et al. [140] are
considered as one data set, then the effective χ2 formed by comparing this data
set to the new parameters is shown in Fig. C.2 as a dashed line. Each of the old
tabulations were typed in from the published literature (6076 values of fx(s) and
5432 values for fe(s)). The data was entered twice and compared to find any typing
errors. Because the new parameters fit the new tabulation relatively well this χ2 is
a measure of the agreement between the two Hartree–Fock programs. Many atomic
numbers agree to χ2 < 1.0 which is good. However, some disagree significantly.
The maximum disagreement occurs for Z = 84 with χ2 = 367. This corresponds to
an average relative error of 0.1

√
χ2 = 1.9% (with the definitions of the error terms

σx and σe in Eq. C.18). The largest percentage error (of about 10%) is in fe(0).
The inverse Mott–Bethe formula constrains fx(0) to be exact. The scattering factors
agree fairly well at high angles.

The particular parameterization was chosen to be a combination of relatively
simple functions so that it can be inverse Fourier transformed analytically. The three-
dimensional atomic potential V (r) = V (x, y, z) is:

V (x, y, z) = 2πa0e

∫
fe(q) exp(−2πiq · r)d3r

= 2π2a0e
∑

i

ai

r
exp(−2πr

√
bi) + 2π5/2a0e

∑

i

cid
−3/2
i exp(−π2r2/di)

with r2 = x2 + y2 + z2 (C.19)
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and the projected atomic potential is:

Vz(x, y) =
∫ +∞

−∞
V (x, y, z)dz

= 4π2a0e
∑

i

aiK0(2πr
√

bi) + 2π2a0e
∑

i

ci

di

exp(−π2r2/di)

with r2 = x2 + y2 (C.20)

where K0(x) is the modified Bessel function. The integral for the first summation
was helped by expression 3.387.6 of Gradshteyn and Ryzhik [163]. Abramowitz
and Stegun [2] (section 9.8) give a convenient numerical expression for evaluating
K0(x). The right-hand side of the expression for Vz(x, y) (Eq. C.20) has units of the
electron charge e. By combining the Rydberg constant Ry = 0.5e2/a0 (Ry/e =
13.6 V) and the Bohr radius a0 = 0.529 Å the electron charge can be written in an
unconventional set of units as e = 14.4 V-Å which is more convenient for evaluating
Vz(x, y).

Z= 1, chisq= 0.170190
4.20298324e-003 2.25350888e-001 6.27762505e-002 2.25366950e-001
3.00907347e-002 2.25331756e-001 6.77756695e-002 4.38854001e+000
3.56609237e-003 4.03884823e-001 2.76135815e-002 1.44490166e+000

Z= 2, chisq= 0.396634
1.87543704e-005 2.12427997e-001 4.10595800e-004 3.32212279e-001
1.96300059e-001 5.17325152e-001 8.36015738e-003 3.66668239e-001
2.95102022e-002 1.37171827e+000 4.65928982e-007 3.75768025e+004

Z= 3, chisq= 0.286232
7.45843816e-002 8.81151424e-001 7.15382250e-002 4.59142904e-002
1.45315229e-001 8.81301714e-001 1.12125769e+000 1.88483665e+001
2.51736525e-003 1.59189995e-001 3.58434971e-001 6.12371000e+000

Z= 4, chisq= 0.195442
6.11642897e-002 9.90182132e-002 1.25755034e-001 9.90272412e-002
2.00831548e-001 1.87392509e+000 7.87242876e-001 9.32794929e+000
1.58847850e-003 8.91900236e-002 2.73962031e-001 3.20687658e+000

Z= 5, chisq= 0.146989
1.25716066e-001 1.48258830e-001 1.73314452e-001 1.48257216e-001
1.84774811e-001 3.34227311e+000 1.95250221e-001 1.97339463e+000
5.29642075e-001 5.70035553e+000 1.08230500e-003 5.64857237e-002

Z= 6, chisq= 0.102440
2.12080767e-001 2.08605417e-001 1.99811865e-001 2.08610186e-001
1.68254385e-001 5.57870773e+000 1.42048360e-001 1.33311887e+000
3.63830672e-001 3.80800263e+000 8.35012044e-004 4.03982620e-002

Z= 7, chisq= 0.060249
5.33015554e-001 2.90952515e-001 5.29008883e-002 1.03547896e+001
9.24159648e-002 1.03540028e+001 2.61799101e-001 2.76252723e+000
8.80262108e-004 3.47681236e-002 1.10166555e-001 9.93421736e-001

Z= 8, chisq= 0.039944
3.39969204e-001 3.81570280e-001 3.07570172e-001 3.81571436e-001
1.30369072e-001 1.91919745e+001 8.83326058e-002 7.60635525e-001
1.96586700e-001 2.07401094e+000 9.96220028e-004 3.03266869e-002
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Z= 9, chisq= 0.027866
2.30560593e-001 4.80754213e-001 5.26889648e-001 4.80763895e-001
1.24346755e-001 3.95306720e+001 1.24616894e-003 2.62181803e-002
7.20452555e-002 5.92495593e-001 1.53075777e-001 1.59127671e+000

Z= 10, chisq= 0.021836
4.08371771e-001 5.88228627e-001 4.54418858e-001 5.88288655e-001
1.44564923e-001 1.21246013e+002 5.91531395e-002 4.63963540e-001
1.24003718e-001 1.23413025e+000 1.64986037e-003 2.05869217e-002

Z= 11, chisq= 0.064136
1.36471662e-001 4.99965301e-002 7.70677865e-001 8.81899664e-001
1.56862014e-001 1.61768579e+001 9.96821513e-001 2.00132610e+001
3.80304670e-002 2.60516254e-001 1.27685089e-001 6.99559329e-001

Z= 12, chisq= 0.051303
3.04384121e-001 8.42014377e-002 7.56270563e-001 1.64065598e+000
1.01164809e-001 2.97142975e+001 3.45203403e-002 2.16596094e-001
9.71751327e-001 1.21236852e+001 1.20593012e-001 5.60865838e-001

Z= 13, chisq= 0.049529
7.77419424e-001 2.71058227e+000 5.78312036e-002 7.17532098e+001
4.26386499e-001 9.13331555e-002 1.13407220e-001 4.48867451e-001
7.90114035e-001 8.66366718e+000 3.23293496e-002 1.78503463e-001

Z= 14, chisq= 0.071667
1.06543892e+000 1.04118455e+000 1.20143691e-001 6.87113368e+001
1.80915263e-001 8.87533926e-002 1.12065620e+000 3.70062619e+000
3.05452816e-002 2.14097897e-001 1.59963502e+000 9.99096638e+000

Z= 15, chisq= 0.047673
1.05284447e+000 1.31962590e+000 2.99440284e-001 1.28460520e-001
1.17460748e-001 1.02190163e+002 9.60643452e-001 2.87477555e+000
2.63555748e-002 1.82076844e-001 1.38059330e+000 7.49165526e+000

Z= 16, chisq= 0.033482
1.01646916e+000 1.69181965e+000 4.41766748e-001 1.74180288e-001
1.21503863e-001 1.67011091e+002 8.27966670e-001 2.30342810e+000
2.33022533e-002 1.56954150e-001 1.18302846e+000 5.85782891e+000

Z= 17, chisq= 0.206186
9.44221116e-001 2.40052374e-001 4.37322049e-001 9.30510439e+000
2.54547926e-001 9.30486346e+000 5.47763323e-002 1.68655688e-001
8.00087488e-001 2.97849774e+000 1.07488641e-002 6.84240646e-002

Z= 18, chisq= 0.263904
1.06983288e+000 2.87791022e-001 4.24631786e-001 1.24156957e+001
2.43897949e-001 1.24158868e+001 4.79446296e-002 1.36979796e-001
7.64958952e-001 2.43940729e+000 8.23128431e-003 5.27258749e-002

Z= 19, chisq= 0.161900
6.92717865e-001 7.10849990e+000 9.65161085e-001 3.57532901e-001
1.48466588e-001 3.93763275e-002 2.64645027e-002 1.03591321e-001
1.80883768e+000 3.22845199e+001 5.43900018e-001 1.67791374e+000

Z= 20, chisq= 0.085209
3.66902871e-001 6.14274129e-002 8.66378999e-001 5.70881727e-001
6.67203300e-001 7.82965639e+000 4.87743636e-001 1.32531318e+000
1.82406314e+000 2.10056032e+001 2.20248453e-002 9.11853450e-002

Z= 21, chisq= 0.052352
3.78871777e-001 6.98910162e-002 9.00022505e-001 5.21061541e-001
7.15288914e-001 7.87707920e+000 1.88640973e-002 8.17512708e-002
4.07945949e-001 1.11141388e+000 1.61786540e+000 1.80840759e+001
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Z= 22, chisq= 0.035298
3.62383267e-001 7.54707114e-002 9.84232966e-001 4.97757309e-001
7.41715642e-001 8.17659391e+000 3.62555269e-001 9.55524906e-001
1.49159390e+000 1.62221677e+001 1.61659509e-002 7.33140839e-002

Z= 23, chisq= 0.030745
3.52961378e-001 8.19204103e-002 7.46791014e-001 8.81189511e+000
1.08364068e+000 5.10646075e-001 1.39013610e+000 1.48901841e+001
3.31273356e-001 8.38543079e-001 1.40422612e-002 6.57432678e-002

Z= 24, chisq= 0.015287
1.34348379e+000 1.25814353e+000 5.07040328e-001 1.15042811e+001
4.26358955e-001 8.53660389e-002 1.17241826e-002 6.00177061e-002
5.11966516e-001 1.53772451e+000 3.38285828e-001 6.62418319e-001

Z= 25, chisq= 0.031274
3.26697613e-001 8.88813083e-002 7.17297000e-001 1.11300198e+001
1.33212464e+000 5.82141104e-001 2.80801702e-001 6.71583145e-001
1.15499241e+000 1.26825395e+001 1.11984488e-002 5.32334467e-002

Z= 26, chisq= 0.031315
3.13454847e-001 8.99325756e-002 6.89290016e-001 1.30366038e+001
1.47141531e+000 6.33345291e-001 1.03298688e+000 1.16783425e+001
2.58280285e-001 6.09116446e-001 1.03460690e-002 4.81610627e-002

Z= 27, chisq= 0.031643
3.15878278e-001 9.46683246e-002 1.60139005e+000 6.99436449e-001
6.56394338e-001 1.56954403e+001 9.36746624e-001 1.09392410e+001
9.77562646e-003 4.37446816e-002 2.38378578e-001 5.56286483e-001

Z= 28, chisq= 0.032245
1.72254630e+000 7.76606908e-001 3.29543044e-001 1.02262360e-001
6.23007200e-001 1.94156207e+001 9.43496513e-003 3.98684596e-002
8.54063515e-001 1.04078166e+001 2.21073515e-001 5.10869330e-001

Z= 29, chisq= 0.010467
3.58774531e-001 1.06153463e-001 1.76181348e+000 1.01640995e+000
6.36905053e-001 1.53659093e+001 7.44930667e-003 3.85345989e-002
1.89002347e-001 3.98427790e-001 2.29619589e-001 9.01419843e-001

Z= 30, chisq= 0.026698
5.70893973e-001 1.26534614e-001 1.98908856e+000 2.17781965e+000
3.06060585e-001 3.78619003e+001 2.35600223e-001 3.67019041e-001
3.97061102e-001 8.66419596e-001 6.85657228e-003 3.35778823e-002

Z= 31, chisq= 0.008110
6.25528464e-001 1.10005650e-001 2.05302901e+000 2.41095786e+000
2.89608120e-001 4.78685736e+001 2.07910594e-001 3.27807224e-001
3.45079617e-001 7.43139061e-001 6.55634298e-003 3.09411369e-002

Z= 32, chisq= 0.032198
5.90952690e-001 1.18375976e-001 5.39980660e-001 7.18937433e+001
2.00626188e+000 1.39304889e+000 7.49705041e-001 6.89943350e+000
1.83581347e-001 3.64667232e-001 9.52190743e-003 2.69888650e-002

Z= 33, chisq= 0.034014
7.77875218e-001 1.50733157e-001 5.93848150e-001 1.42882209e+002
1.95918751e+000 1.74750339e+000 1.79880226e-001 3.31800852e-001
8.63267222e-001 5.85490274e+000 9.59053427e-003 2.33777569e-002

Z= 34, chisq= 0.035703
9.58390681e-001 1.83775557e-001 6.03851342e-001 1.96819224e+002
1.90828931e+000 2.15082053e+000 1.73885956e-001 3.00006024e-001
9.35265145e-001 4.92471215e+000 8.62254658e-003 2.12308108e-002
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Z= 35, chisq= 0.039250
1.14136170e+000 2.18708710e-001 5.18118737e-001 1.93916682e+002
1.85731975e+000 2.65755396e+000 1.68217399e-001 2.71719918e-001
9.75705606e-001 4.19482500e+000 7.24187871e-003 1.99325718e-002

Z= 36, chisq= 0.045421
3.24386970e-001 6.31317973e+001 1.31732163e+000 2.54706036e-001
1.79912614e+000 3.23668394e+000 4.29961425e-003 1.98965610e-002
1.00429433e+000 3.61094513e+000 1.62188197e-001 2.45583672e-001

Z= 37, chisq= 0.130044
2.90445351e-001 3.68420227e-002 2.44201329e+000 1.16013332e+000
7.69435449e-001 1.69591472e+001 1.58687000e+000 2.53082574e+000
2.81617593e-003 1.88577417e-002 1.28663830e-001 2.10753969e-001

Z= 38, chisq= 0.188055
1.37373086e-002 1.87469061e-002 1.97548672e+000 6.36079230e+000
1.59261029e+000 2.21992482e-001 1.73263882e-001 2.01624958e-001
4.66280378e+000 2.53027803e+001 1.61265063e-003 1.53610568e-002

Z= 39, chisq= 0.174927
6.75302747e-001 6.54331847e-002 4.70286720e-001 1.06108709e+002
2.63497677e+000 2.06643540e+000 1.09621746e-001 1.93131925e-001
9.60348773e-001 1.63310938e+000 5.28921555e-003 1.66083821e-002

Z= 40, chisq= 0.072078
2.64365505e+000 2.20202699e+000 5.54225147e-001 1.78260107e+002
7.61376625e-001 7.67218745e-002 6.02946891e-003 1.55143296e-002
9.91630530e-002 1.76175995e-001 9.56782020e-001 1.54330682e+000

Z= 41, chisq= 0.011800
6.59532875e-001 8.66145490e-002 1.84545854e+000 5.94774398e+000
1.25584405e+000 6.40851475e-001 1.22253422e-001 1.66646050e-001
7.06638328e-001 1.62853268e+000 2.62381591e-003 8.26257859e-003

Z= 42, chisq= 0.008976
6.10160120e-001 9.11628054e-002 1.26544000e+000 5.06776025e-001
1.97428762e+000 5.89590381e+000 6.48028962e-001 1.46634108e+000
2.60380817e-003 7.84336311e-003 1.13887493e-001 1.55114340e-001

Z= 43, chisq= 0.023771
8.55189183e-001 1.02962151e-001 1.66219641e+000 7.64907000e+000
1.45575475e+000 1.01639987e+000 1.05445664e-001 1.42303338e-001
7.71657112e-001 1.34659349e+000 2.20992635e-003 7.90358976e-003

Z= 44, chisq= 0.010613
4.70847093e-001 9.33029874e-002 1.58180781e+000 4.52831347e-001
2.02419818e+000 7.11489023e+000 1.97036257e-003 7.56181595e-003
6.26912639e-001 1.25399858e+000 1.02641320e-001 1.33786087e-001

Z= 45, chisq= 0.012895
4.20051553e-001 9.38882628e-002 1.76266507e+000 4.64441687e-001
2.02735641e+000 8.19346046e+000 1.45487176e-003 7.82704517e-003
6.22809600e-001 1.17194153e+000 9.91529915e-002 1.24532839e-001

Z= 46, chisq= 0.009172
2.10475155e+000 8.68606470e+000 2.03884487e+000 3.78924449e-001
1.82067264e-001 1.42921634e-001 9.52040948e-002 1.17125900e-001
5.91445248e-001 1.07843808e+000 1.13328676e-003 7.80252092e-003

Z= 47, chisq= 0.006648
2.07981390e+000 9.92540297e+000 4.43170726e-001 1.04920104e-001
1.96515215e+000 6.40103839e-001 5.96130591e-001 8.89594790e-001
4.78016333e-001 1.98509407e+000 9.46458470e-002 1.12744464e-001
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Z= 48, chisq= 0.005588
1.63657549e+000 1.24540381e+001 2.17927989e+000 1.45134660e+000
7.71300690e-001 1.26695757e-001 6.64193880e-001 7.77659202e-001
7.64563285e-001 1.66075210e+000 8.61126689e-002 1.05728357e-001

Z= 49, chisq= 0.002569
2.24820632e+000 1.51913507e+000 1.64706864e+000 1.30113424e+001
7.88679265e-001 1.06128184e-001 8.12579069e-002 9.94045620e-002
6.68280346e-001 1.49742063e+000 6.38467475e-001 7.18422635e-001

Z= 50, chisq= 0.005051
2.16644620e+000 1.13174909e+001 6.88691021e-001 1.10131285e-001
1.92431751e+000 6.74464853e-001 5.65359888e-001 7.33564610e-001
9.18683861e-001 1.02310312e+001 7.80542213e-002 9.31104308e-002

Z= 51, chisq= 0.004383
1.73662114e+000 8.84334719e-001 9.99871380e-001 1.38462121e-001
2.13972409e+000 1.19666432e+001 5.60566526e-001 6.72672880e-001
9.93772747e-001 8.72330411e+000 7.37374982e-002 8.78577715e-002

Z= 52, chisq= 0.004105
2.09383882e+000 1.26856869e+001 1.56940519e+000 1.21236537e+000
1.30941993e+000 1.66633292e-001 6.98067804e-002 8.30817576e-002
1.04969537e+000 7.43147857e+000 5.55594354e-001 6.17487676e-001

Z= 53, chisq= 0.004068
1.60186925e+000 1.95031538e-001 1.98510264e+000 1.36976183e+001
1.48226200e+000 1.80304795e+000 5.53807199e-001 5.67912340e-001
1.11728722e+000 6.40879878e+000 6.60720847e-002 7.86615429e-002

Z= 54, chisq= 0.004381
1.60015487e+000 2.92913354e+000 1.71644581e+000 1.55882990e+001
1.84968351e+000 2.22525983e-001 6.23813648e-002 7.45581223e-002
1.21387555e+000 5.56013271e+000 5.54051946e-001 5.21994521e-001

Z= 55, chisq= 0.042676
2.95236854e+000 6.01461952e+000 4.28105721e-001 4.64151246e+001
1.89599233e+000 1.80109756e-001 5.48012938e-002 7.12799633e-002
4.70838600e+000 4.56702799e+001 5.90356719e-001 4.70236310e-001

Z= 56, chisq= 0.043267
3.19434243e+000 9.27352241e+000 1.98289586e+000 2.28741632e-001
1.55121052e-001 3.82000231e-002 6.73222354e-002 7.30961745e-002
4.48474211e+000 2.95703565e+001 5.42674414e-001 4.08647015e-001

Z= 57, chisq= 0.033249
2.05036425e+000 2.20348417e-001 1.42114311e-001 3.96438056e-002
3.23538151e+000 9.56979169e+000 6.34683429e-002 6.92443091e-002
3.97960586e+000 2.53178406e+001 5.20116711e-001 3.83614098e-001

Z= 58, chisq= 0.029355
3.22990759e+000 9.94660135e+000 1.57618307e-001 4.15378676e-002
2.13477838e+000 2.40480572e-001 5.01907609e-001 3.66252019e-001
3.80889010e+000 2.43275968e+001 5.96625028e-002 6.59653503e-002

Z= 59, chisq= 0.029725
1.58189324e-001 3.91309056e-002 3.18141995e+000 1.04139545e+001
2.27622140e+000 2.81671757e-001 3.97705472e+000 2.61872978e+001
5.58448277e-002 6.30921695e-002 4.85207954e-001 3.54234369e-001

Z= 60, chisq= 0.027597
1.81379417e-001 4.37324793e-002 3.17616396e+000 1.07842572e+001
2.35221519e+000 3.05571833e-001 3.83125763e+000 2.54745408e+001
5.25889976e-002 6.02676073e-002 4.70090742e-001 3.39017003e-001
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Z= 61, chisq= 0.025208
1.92986811e-001 4.37785970e-002 2.43756023e+000 3.29336996e-001
3.17248504e+000 1.11259996e+001 3.58105414e+000 2.46709586e+001
4.56529394e-001 3.24990282e-001 4.94812177e-002 5.76553100e-002

Z= 62, chisq= 0.023540
2.12002595e-001 4.57703608e-002 3.16891754e+000 1.14536599e+001
2.51503494e+000 3.55561054e-001 4.44080845e-001 3.11953363e-001
3.36742101e+000 2.40291435e+001 4.65652543e-002 5.52266819e-002

Z= 63, chisq= 0.022204
2.59355002e+000 3.82452612e-001 3.16557522e+000 1.17675155e+001
2.29402652e-001 4.76642249e-002 4.32257780e-001 2.99719833e-001
3.17261920e+000 2.34462738e+001 4.37958317e-002 5.29440680e-002

Z= 64, chisq= 0.017492
3.19144939e+000 1.20224655e+001 2.55766431e+000 4.08338876e-001
3.32681934e-001 5.85819814e-002 4.14243130e-002 5.06771477e-002
2.61036728e+000 1.99344244e+001 4.20526863e-001 2.85686240e-001

Z= 65, chisq= 0.020036
2.59407462e-001 5.04689354e-002 3.16177855e+000 1.23140183e+001
2.75095751e+000 4.38337626e-001 2.79247686e+000 2.23797309e+001
3.85931001e-002 4.87920992e-002 4.10881708e-001 2.77622892e-001

Z= 66, chisq= 0.019351
3.16055396e+000 1.25470414e+001 2.82751709e+000 4.67899094e-001
2.75140255e-001 5.23226982e-002 4.00967160e-001 2.67614884e-001
2.63110834e+000 2.19498166e+001 3.61333817e-002 4.68871497e-002

Z= 67, chisq= 0.018720
2.88642467e-001 5.40507687e-002 2.90567296e+000 4.97581077e-001
3.15960159e+000 1.27599505e+001 3.91280259e-001 2.58151831e-001
2.48596038e+000 2.15400972e+001 3.37664478e-002 4.50664323e-002

Z= 68, chisq= 0.018677
3.15573213e+000 1.29729009e+001 3.11519560e-001 5.81399387e-002
2.97722406e+000 5.31213394e-001 3.81563854e-001 2.49195776e-001
2.40247532e+000 2.13627616e+001 3.15224214e-002 4.33253257e-002

Z= 69, chisq= 0.018176
3.15591970e+000 1.31232407e+001 3.22544710e-001 5.97223323e-002
3.05569053e+000 5.61876773e-001 2.92845100e-002 4.16534255e-002
3.72487205e-001 2.40821967e-001 2.27833695e+000 2.10034185e+001

Z= 70, chisq= 0.018460
3.10794704e+000 6.06347847e-001 3.14091221e+000 1.33705269e+001
3.75660454e-001 7.29814740e-002 3.61901097e-001 2.32652051e-001
2.45409082e+000 2.12695209e+001 2.72383990e-002 3.99969597e-002

Z= 71, chisq= 0.015021
3.11446863e+000 1.38968881e+001 5.39634353e-001 8.91708508e-002
3.06460915e+000 6.79919563e-001 2.58563745e-002 3.82808522e-002
2.13983556e+000 1.80078788e+001 3.47788231e-001 2.22706591e-001

Z= 72, chisq= 0.012070
3.01166899e+000 7.10401889e-001 3.16284788e+000 1.38262192e+001
6.33421771e-001 9.48486572e-002 3.41417198e-001 2.14129678e-001
1.53566013e+000 1.55298698e+001 2.40723773e-002 3.67833690e-002

Z= 73, chisq= 0.010775
3.20236821e+000 1.38446369e+001 8.30098413e-001 1.18381581e-001
2.86552297e+000 7.66369118e-001 2.24813887e-002 3.52934622e-002
1.40165263e+000 1.46148877e+001 3.33740596e-001 2.05704486e-001
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Z= 74, chisq= 0.009479
9.24906855e-001 1.28663377e-001 2.75554557e+000 7.65826479e-001
3.30440060e+000 1.34471170e+001 3.29973862e-001 1.98218895e-001
1.09916444e+000 1.35087534e+001 2.06498883e-002 3.38918459e-002

Z= 75, chisq= 0.004620
1.96952105e+000 4.98830620e+001 1.21726619e+000 1.33243809e-001
4.10391685e+000 1.84396916e+000 2.90791978e-002 2.84192813e-002
2.30696669e-001 1.90968784e-001 6.08840299e-001 1.37090356e+000

Z= 76, chisq= 0.003085
2.06385867e+000 4.05671697e+001 1.29603406e+000 1.46559047e-001
3.96920673e+000 1.82561596e+000 2.69835487e-002 2.84172045e-002
2.31083999e-001 1.79765184e-001 6.30466774e-001 1.38911543e+000

Z= 77, chisq= 0.003924
2.21522726e+000 3.24464090e+001 1.37573155e+000 1.60920048e-001
3.78244405e+000 1.78756553e+000 2.44643240e-002 2.82909938e-002
2.36932016e-001 1.70692368e-001 6.48471412e-001 1.37928390e+000

Z= 78, chisq= 0.003817
9.84697940e-001 1.60910839e-001 2.73987079e+000 7.18971667e-001
3.61696715e+000 1.29281016e+001 3.02885602e-001 1.70134854e-001
2.78370726e-001 1.49862703e+000 1.52124129e-002 2.83510822e-002

Z= 79, chisq= 0.003143
9.61263398e-001 1.70932277e-001 3.69581030e+000 1.29335319e+001
2.77567491e+000 6.89997070e-001 2.95414176e-001 1.63525510e-001
3.11475743e-001 1.39200901e+000 1.43237267e-002 2.71265337e-002

Z= 80, chisq= 0.002717
1.29200491e+000 1.83432865e-001 2.75161478e+000 9.42368371e-001
3.49387949e+000 1.46235654e+001 2.77304636e-001 1.55110144e-001
4.30232810e-001 1.28871670e+000 1.48294351e-002 2.61903834e-002

Z= 81, chisq= 0.003492
3.75964730e+000 1.35041513e+001 3.21195904e+000 6.66330993e-001
6.47767825e-001 9.22518234e-002 2.76123274e-001 1.50312897e-001
3.18838810e-001 1.12565588e+000 1.31668419e-002 2.48879842e-002

Z= 82, chisq= 0.001158
1.00795975e+000 1.17268427e-001 3.09796153e+000 8.80453235e-001
3.61296864e+000 1.47325812e+001 2.62401476e-001 1.43491014e-001
4.05621995e-001 1.04103506e+000 1.31812509e-002 2.39575415e-002

Z= 83, chisq= 0.026436
1.59826875e+000 1.56897471e-001 4.38233925e+000 2.47094692e+000
2.06074719e+000 5.72438972e+001 1.94426023e-001 1.32979109e-001
8.22704978e-001 9.56532528e-001 2.33226953e-002 2.23038435e-002

Z= 84, chisq= 0.008962
1.71463223e+000 9.79262841e+001 2.14115960e+000 2.10193717e-001
4.37512413e+000 3.66948812e+000 2.16216680e-002 1.98456144e-002
1.97843837e-001 1.33758807e-001 6.52047920e-001 7.80432104e-001

Z= 85, chisq= 0.033776
1.48047794e+000 1.25943919e+002 2.09174630e+000 1.83803008e-001
4.75246033e+000 4.19890596e+000 1.85643958e-002 1.81383503e-002
2.05859375e-001 1.33035404e-001 7.13540948e-001 7.03031938e-001

Z= 86, chisq= 0.050132
6.30022295e-001 1.40909762e-001 3.80962881e+000 3.08515540e+001
3.89756067e+000 6.51559763e-001 2.40755100e-001 1.08899672e-001
2.62868577e+000 6.42383261e+000 3.14285931e-002 2.42346699e-002
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Z= 87, chisq= 0.056720
5.23288135e+000 8.60599536e+000 2.48604205e+000 3.04543982e-001
3.23431354e-001 3.87759096e-002 2.55403596e-001 1.28717724e-001
5.53607228e-001 5.36977452e-001 5.75278889e-003 1.29417790e-002

Z= 88, chisq= 0.081498
1.44192685e+000 1.18740873e-001 3.55291725e+000 1.01739750e+000
3.91259586e+000 6.31814783e+001 2.16173519e-001 9.55806441e-002
3.94191605e+000 3.50602732e+001 4.60422605e-002 2.20850385e-002

Z= 89, chisq= 0.077643
1.45864127e+000 1.07760494e-001 4.18945405e+000 8.89090649e+001
3.65866182e+000 1.05088931e+000 2.08479229e-001 9.09335557e-002
3.16528117e+000 3.13297788e+001 5.23892556e-002 2.08807697e-002

Z= 90, chisq= 0.048096
1.19014064e+000 7.73468729e-002 2.55380607e+000 6.59693681e-001
4.68110181e+000 1.28013896e+001 2.26121303e-001 1.08632194e-001
3.58250545e-001 4.56765664e-001 7.82263950e-003 1.62623474e-002

Z= 91, chisq= 0.070186
4.68537504e+000 1.44503632e+001 2.98413708e+000 5.56438592e-001
8.91988061e-001 6.69512914e-002 2.24825384e-001 1.03235396e-001
3.04444846e-001 4.27255647e-001 9.48162708e-003 1.77730611e-002

Z= 92, chisq= 0.072478
4.63343606e+000 1.63377267e+001 3.18157056e+000 5.69517868e-001
8.76455075e-001 6.88860012e-002 2.21685477e-001 9.84254550e-002
2.72917100e-001 4.09470917e-001 1.11737298e-002 1.86215410e-002

Z= 93, chisq= 0.074792
4.56773888e+000 1.90992795e+001 3.40325179e+000 5.90099634e-001
8.61841923e-001 7.03204851e-002 2.19728870e-001 9.36334280e-002
2.38176903e-001 3.93554882e-001 1.38306499e-002 1.94437286e-002

Z= 94, chisq= 0.071877
5.45671123e+000 1.01892720e+001 1.11687906e-001 3.98131313e-002
3.30260343e+000 3.14622212e-001 1.84568319e-001 1.04220860e-001
4.93644263e-001 4.63080540e-001 3.57484743e+000 2.19369542e+001

Z= 95, chisq= 0.062156
5.38321999e+000 1.07289857e+001 1.23343236e-001 4.15137806e-002
3.46469090e+000 3.39326208e-001 1.75437132e-001 9.98932346e-002
3.39800073e+000 2.11601535e+001 4.69459519e-001 4.51996970e-001

Z= 96, chisq= 0.050111
5.38402377e+000 1.11211419e+001 3.49861264e+000 3.56750210e-001
1.88039547e-001 5.39853583e-002 1.69143137e-001 9.60082633e-002
3.19595016e+000 1.80694389e+001 4.64393059e-001 4.36318197e-001

Z= 97, chisq= 0.044081
3.66090688e+000 3.84420906e-001 2.03054678e-001 5.48547131e-002
5.30697515e+000 1.17150262e+001 1.60934046e-001 9.21020329e-002
3.04808401e+000 1.73525367e+001 4.43610295e-001 4.27132359e-001

Z= 98, chisq= 0.041053
3.94150390e+000 4.18246722e-001 5.16915345e+000 1.25201788e+001
1.61941074e-001 4.81540117e-002 4.15299561e-001 4.24913856e-001
2.91761325e+000 1.90899693e+001 1.51474927e-001 8.81568925e-002

Z= 99, chisq= 0.036478
4.09780623e+000 4.46021145e-001 5.10079393e+000 1.31768613e+001
1.74617289e-001 5.02742829e-002 2.76774658e+000 1.84815393e+001
1.44496639e-001 8.46232592e-002 4.02772109e-001 4.17640100e-001
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Z=100, chisq= 0.032651
4.24934820e+000 4.75263933e-001 5.03556594e+000 1.38570834e+001
1.88920613e-001 5.26975158e-002 3.94356058e-001 4.11193751e-001
2.61213100e+000 1.78537905e+001 1.38001927e-001 8.12774434e-002

Z=101, chisq= 0.029668
2.00942931e-001 5.48366518e-002 4.40119869e+000 5.04248434e-001
4.97250102e+000 1.45721366e+001 2.47530599e+000 1.72978308e+001
3.86883197e-001 4.05043898e-001 1.31936095e-001 7.80821071e-002

Z=102, chisq= 0.027320
2.16052899e-001 5.83584058e-002 4.91106799e+000 1.53264212e+001
4.54862870e+000 5.34434760e-001 2.36114249e+000 1.68164803e+001
1.26277292e-001 7.50304633e-002 3.81364501e-001 3.99305852e-001

Z=103, chisq= 0.024894
4.86738014e+000 1.60320520e+001 3.19974401e-001 6.70871138e-002
4.58872425e+000 5.77039373e-001 1.21482448e-001 7.22275899e-002
2.31639872e+000 1.41279737e+001 3.79258137e-001 3.89973484e-001



Appendix D
The Inverse Problem

Most of the discussions up to here have focused on the basic understanding of image
formation in the TEM and how to calculate the expected images from first principles
which might be labeled the “forward problem.” Understanding what in the image
is real and what is an artifact is important. The so-called “inverse problem” is a
calculation in the opposite direction. That is, start from the recorded image (or other
related data) and work backwards to uncover the original specimen structure (or
other related information about the specimen). The inverse problem usually requires
a good understanding of the forward problem and is typically much harder and
equally important. The inverse problem might warrant a whole second volume but
time and space limitations only permit a short summary here. Some discussion has
also been given by Kirkland [277].

The calculations involved in the inverse problem are usually much harder than
the forward problem. The inverse problem is usually said to be ill-conditioned
because it usually leads to some mathematical ambiguity such as a singular matrix
or division be zero. Subtle algorithms with clever mathematical manipulations are
usually required to circumvent these problems. Adding to these difficulties, the
input data may have significant random noise from the measurement process which
further complicates the calculation. The quality of the result typically depends on
the SNR (signal to noise ratio) of the original data. The larger the SNR, the better
the result.

The inverse problem originated from the desire to uncover the specimen structure
from an X-ray or electron diffraction pattern. There has been a large amount of effort
and publications on developing computational methods for the problem of inverting
a diffraction pattern, but will not be reviewed significantly here.

The corresponding inverse problem for electron microscope images was initiated
by Schiske [445] (English translation [446]) with reconstruction from a defocus
series of BF-CTEM images. Each image in a defocus series contains a little
different information about the specimen compared to other images. Recombining
the information from all images in the series may result in an improved image with
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more information than a single image. Schiske’s original work assumed a linear
image model and was studied in depth by Frank [141]. When the ideal image is
modeled as a general complex object, then the reconstructed image is identified
as the exit wave (or transmission function for thin specimens). The whole process
can then be called “exit wave reconstruction” (EWR). Later efforts by Kirkland
et al. [266, 267, 270, 282–284] extended the theory to properly handle the singularity
found in the original Schiske formula and include nonlinear effects with a complex
image in the MIMAP method. Coene et al. [66, 67, 490] proposed a modification
valid in some cases that improves the speed of this method (the MAL method).
Kirkland et al. [265, 344, 345] have also shown how a series of images at different
tilt angles may be used for image reconstruction. If the exit wave is properly
reconstructed the imaginary (or anomalous) portion has a strong variation with
atomic number similar to that in ADF-STEM (Kirkland and Siegel [281]). Exit wave
reconstruction methods have been reviewed by Kirkland [263] and Ophus [389].

If the exit wave has been reconstructed, then the next step in the inverse problem
would be to invert the three-dimensional structure of the specimen in an inverse
multislice calculation (or inverse Bloch wave calculation) which is even more
difficult. Some methods have been proposed by Gribelyuk [168], Beeching [27, 28],
Spargo [467], Allen [7, 9, 10], Spence [469, 471], and O’Leary [385], but there has
not been much practical application as yet.

The inverse method known as tomography uses a set of 2D images (CTEM or
STEM) taken at different tilt angles to reconstruct the 3D structure of the specimen
(for example, Midgley [346], Ercius et al. [121]). Cryo-EM uses a large number of
low dose images of single (identical) biological particles at random orientations
(a serendipitous tilt series) to effectively perform tomography on 3D biological
particles (for example, Frank [143], Cheng et al. [63], Nogales [374]).

Reconstructing specimen information from a large 4D data set is called pty-
chography. The whole diffraction pattern (CBED) is recorded at each position of
the probe in STEM, generating a prodigious amount of data that has only recently
become practical to record using large disk drives and fast detectors. The CBED
pattern is recorded in two dimensions and the probe is scanned in two dimensions,
so this is an effective 4D data set. This large data set includes a variety of useful
information that might be exploited. Ptychography and has been discussed by many
authors, for example, Rodenburg and Bates [423], Nellist and Rodenbury [370],
Plamann and Rodenburg [403], Maiden et al. [328, 329], and D’Alfonso et al. [90].
Jiang et al. [247] have recently reported remarkable resolution in 2D materials using
ptychography.

There are many available software packages for the inverse problem in elec-
tron microscopy. Some of them are listed in Table D.1. Many of the newer
programs are for reconstructing cryo-EM images into 3D biological structures.
Smith and Carragher [466] have given a recent review of software develop-
ments for analysis of biological electron microscope images. An online list-
ing is maintained at wikipedia (en.wikibooks.org/wiki) under the title
/Software_Tools_For_Molecular_Microscopy.
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Table D.1 Some available image analysis software packages for electron microscopy

Program Author Year Type Comments

IMPROC Saxton [436] 1978 IP

SEMPER Saxton [437, 438] 1979, 1996 IP

SPIDER Frank et al. [145] 1981 BIP

SPIDER/WEB Frank et al. [144] 1996 BIP

EM Hegerl [200, 201] 1982, 1996 IP

CRISP Hovmöller [217] 1992 DA

IMAGIC van Heel et al. [509, 510] 1981, 1996 BIP

Xmipp Marabini et al. [330] 1996 BIP

EMAN Ludtke et al. [321] 1999 BIP

TRICE Zou et al. [548] 2004 DA

EDM Kilaas et al. [259] 2005 DA

serialEM Mastronarde [334] 2005 TOM

EMAN2 Tang et al. [484] 2007 BIP

SPIRE Baxter et al. [26] 2007 BIP

SPARX Hohn et al. [209] 2007 BIP Python

FREALIGN Grigorieff [169] 2007 BIP

imageJ Schneider et al. [447] 2012 IP

SIMPLE Elmlund and Elmlund [116] 2012 BIP

RELION Scheres [440] 2012 BIP

Xmipp3 de la Rosa-Trevín et al. [93] 2013 BIP

tomviz Hovden et al. [214, 310] 2015 TOM

RELION2 Kimanius et al. [261] 2016 BIP GPU

GENFIRE Pryor et al. [407] 2017 TOM 3D atomic imaging

IP is image processing, BIP is biological image processing, DA is diffraction analysis, and TOM
is tomography. Some may be commercial and other private programs likely exist. Some older
programs may no longer be available. Apologies to the authors of many other programs that may
have been left out



Appendix E
Bilinear Interpolation

It is frequently necessary to combine or compare two different digital images
with different sampling sizes (Δx or Δy). Interpolation in two dimensions is one
method of reconciling the difference in sampling sizes. For example, most simulated
electron microscope images will have a rectangular pixel with unequal spacings in x

and y (to match the underlying periodicity of the specimen) but many image display
devices (computer screens) will have square pixels with equal spacings in x and y.
To properly display an image with rectangular pixels on a device with square pixels
will require resampling the image.

The basic problem can be stated as: Given a set of image intensities sampled on
a two-dimensional grid with spacing Δxa and Δya generate another set of image
intensities on a grid with a different spacing Δxb and Δyb. Interpolating the initial
grid in two dimensions generates a function of two independent variables f (x, y)

that is continuous but may not have continuous derivatives. Calculating this function
at each point in the new grid effectively samples the first image onto the second
grid. This procedure works best if the first and second grids are nearly the sample
spacing. If the spacings are dramatically different (i.e., more than about a factor of
two different), then various artifacts can be produced.

The basic geometry of interpolation on a grid is shown in Fig. E.1. The initial
image is only given at discrete points in (x, y). To find an interpolated value at
an arbitrary point requires first locating the four grid points surrounding the point
(x, y). In Fig. E.1 the new point is located between x1 and x2 in x and between y1
and y2 in y. The values of the initial image at the four grid point surrounding (x, y)

are f11, f12, f22, and f21.
With four points there are four know conditions and the best interpolation

available is a bilinear form:

f (x, y) = a + bx + cy + dxy (E.1)
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Fig. E.1 Interpolation in a two-dimensional rectangular grid. The function f (x, y) can be found
at an arbitrary point (x, y) given only the values sampled at discrete values of x = x1, x2 and
y = y1, y2 surrounding point (x, y). The spacing in x does not need to be the same as that in y

The a, b, c, and d coefficients are determined by the surrounding image values as:

f11 = a + bx1 + cy1 + dx1y1

f12 = a + bx1 + cy2 + dx1y2

f22 = a + bx2 + cy2 + dx2y2

f21 = a + bx2 + cy1 + dx2y1 (E.2)

Combining pairs of equations yields:

(f11 − f12) = (c + dx1)(y1 − y2)

(f21 − f22) = (c + dx2)(y1 − y2) (E.3)

The coefficients may be found one at a time. Subtracting Eqs. E.3 yields a value for
d:

d = f11 − f12 − f21 + f22

(x1 − x2)(y1 − y2)
(E.4)

Using this value for d and one of Eqs. E.3 yields a value for c:

c =
(

f11 − f12

y1 − y2

)
− dx1 (E.5)

Next combing Eqs. E.2 in a slightly different order gives:

f11 − f21 = b(x1 − x2) + dy1(x1 − x2) (E.6)
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from which the a and b coefficients can be found.

b =
(

f11 − f21

x1 − x2

)
− dy1 (E.7)

a = f11 − bx1 − cy1 − dx1y1 (E.8)

Now given a value for all four coefficients (a, b, c, and d) a value for the function
f (x, y) at any point inside the four grid points may be obtained from Eq. E.1.
Repeating this process at each point of the second grid yields an interpolated value
of the first image at each grid point of the second image.



Appendix F
3D Perspective View

The specimen is clearly three dimensional (3D) but the electron microscope image is
two dimensional (2D). The three-dimensional structure of the specimen is projected
into the final two-dimensional image making it difficult to determine if the original
three-dimensional structure of the specimen was properly described. The electron
microscope image is in an x, y plane but the crystal structure is a set of (xi, yi, zi)

coordinates. The third dimension z can have a significant influence on the scattering
within the specimen and influence the final image in rather nonintuitive ways. It
is important to check that the full three-dimensional structure of the specimen has
been entered correctly.

A crystalline or amorphous specimen must be described as a detailed numerical
list of atomic coordinates before an electron microscope image of the specimen
can be simulated in the computer. Generating this set of numbers can be a rather
tedious and difficult task. It is difficult to generate this list and even more difficult to
determine if it is correct in the first place.

One particular type of diagnostic tool to determine if the specimen description
is correct is to render a 3D perspective view of the entire specimen structure. Each
atom can be drawn as a simple hard sphere and the entire structure can be rotated
and viewed to inspect its three-dimensional structure. A full rendering with shading
and hidden surfaces can be difficult to calculate. There are a variety of sophisticated
programs available for this procedure (for example, RasMol [439], jmol [248], and
VESTA [359]). However, if some approximations are made there is a simple way
to draw a reasonable approximation of the full 3D structure.

The specimen is assumed to be a collection of atoms in 3D. Each atom is drawn
as a hard sphere at a particular set of coordinates (xi, yi, zi) in 3D. This structure is
viewed from a particular point in space as shown in Fig. F.1. The image seen by the
viewer must be projected into a 2D image (the computer screen or a piece of paper).
If the viewer is close, then the structure will appear more distorted than if the viewer
is far away. By varying the relative viewing position the three-dimensional nature of
the structure can be investigated.
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Fig. F.1 3D geometry of viewing a three-dimensional collection of atoms (a specimen) as a two-
dimensional projection

There are several approximations that make the 2D image simple to generate.
First approximate a 3D sphere as a shaded circle. In 3D some atoms will be in front
of other atoms and fully or partially hide those atoms in the back from the viewer.
This is the so-called hidden surface problem. A simple approach to drawing hidden
surfaces is to sort by depth and draw from the back forward. This is not particularly
efficient but is simple to program and does a reasonable job of hiding the appropriate
atoms. One particular situation that is not handled properly is the case where two
adjacent atoms are at the same depth. One atom will be arbitrarily drawn on top
of the other. This approach is simply enough to program on relatively simple and
inexpensive personal computers Kirkland [268].

A 3D perspective view of the specimen is more useful if it can be rotated to
see it from different angles. This should be done before drawing the 2D image for
obvious reasons. Given a rotation angle φ and the tilt angle θ the initial set of atom
coordinates (xi, yi, zi) can be rotated about the point (x0, y0, z0) (usually the center
of the crystal) in two steps. First rotate by φ as:

x′
i = (xi − x0) cos φ − (yi − y0) sin φ

y′
i = (xi − x0) sin φ + (yi − y0) cos φ (F.1)

then tilt by θ as:

y′′
i = y′

i cos θ + (zi − z0) sin θ

z′
i = −y′

i sin θ + (zi − z0) cos θ (F.2)
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Fig. F.2 Similar triangles used to calculate the relative coordinates in a 3D perspective view

Rotating and tilting produce a new set of coordinates (x′
i , y

′′
i , z′

i ). An angle of
(φ, θ) = (0, 0) generates a view down the beam direction (the optic axis of the
electron microscope). After rotating and tilting the z′

i coordinates are offset to yield
z > 0 at the top or entrance surface and z = 0 at the bottom or exit surface. In
Fig. F.1 the electrons are traveling from left to right with z = 0 on the right.

The position of each atom on the 2D viewing screen is not simply (x′
i , y

′′
i ). The

three-dimensional geometry between the viewer, the specimen, and 2D viewing
screen must be taken into account (for example, Newman and Sproull [372]). If L is
the distance from the viewer to the viewing screen and the specimen is in between
the viewer and the viewing screen (as in Fig. F.1), then the actual coordinates on the
viewing screen (xi, yi)s are:

xsi = Lx′
i

L − z′
i

ysi = Ly′′
i

L − z′
i

(F.3)

by comparison of similar triangles as in Fig. F.2. The apparent size of each atom
must also be scaled in a similar manner. If the actual 3D diameter of the atom is di ,
then the diameter of the 2D circle is:

dsi = Ldi

L − z′
i

(F.4)

The final set of coordinates is sorted by depth z′
i and drawn from negative z′

i to
positive z′

i . The sorting method of Shell is relatively easy to program and efficient
enough for this purpose (Shell [455] and Press et al. [406]). After sorting, each
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atom is drawn as a shaded circle. Each successive layer of atoms will overwrite the
previous layer taking care of the hidden surface problem. Drawing a simple shaded
circle is relatively easy and can mimic an actual 3D shaded sphere in a convincing
manner. There are several possible ways to do this and two empirical schemes are
listed below. If the output 2D perspective image is encoded as eight bits per pixel
(integer valued) with 255 being white and 0 being black, then the gray scale intensity
g inside each circle can follow:

g = 255 − 150
r2

r2
max

(F.5)

where r is the radius of the circle, and rmax is its maximum radius. This generates a
white shaded circle on a black background. The entire background should be set
to black before drawing any of the atoms. Alternately if an image is generated
for printing on a postscript printer, then the following postscript macros (Adobe
Reference manual [225]) generate a black shaded circle on a white background:

%
% macro to make a unit circle at (0,0)
%
/circle {newpath 0 0 1 0 360 arc
closepath fill} def

%
% macro to make a shaded sphere
% call as--> xscale yscale xpos ypos sp
%
/sp { gsave translate scale

0.0 0.04 1 { sqrt 1 exch sub setgray circle
0.98 0.98 scale } for grestore } def

The first macro called “circle” draw a circle and fills it in with the current color or
gray level. The second macros called “sp” draws a series of solid circle one on top of
the other. Each successive circle is slightly smaller and slightly blacker to generate
the shading. The “sp” macro is given a short name because it must be called many
times and a shorter name will use less disk space and transfer quicker to the printer.
Figure F.3 shows an example of a 3D view looking down the 110 direction of the
silicon lattice.
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Fig. F.3 A 3D perspective
view looking down the (110)
direction of silicon (drawn in
postscript format). Each
silicon atom is drawn as a
shaded hard sphere (black)
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